it looks like sorting numpy structured and record arrays by a single column is much slower than doing a sort on a similar standalone array:
In [111]: a = np.random.rand(1e4)
In [112]: b = np.random.rand(1e4)
In [113]: rec = np.rec.fromarrays([a,b])
In [114]: timeit rec.argsort(order='f0')
100 loops, best of 3: 18.8 ms per loop
In [115]: timeit a.argsort()
1000 loops, best of 3: 891 μs per loop
There is a marginal improvement using the structured array, but it's not dramatic:
In [120]: struct = np.empty(len(a),dtype=[('a','f8'),('b','f8')])
In [121]: struct['a'] = a
In [122]: struct['b'] = b
In [124]: timeit struct.argsort(order='a')
100 loops, best of 3: 15.8 ms per loop
This indicates that it's potentially faster to create an index array from argsort and then use that to reorder the individual arrays. This is OK except that I expect to be dealing with very large arrays and would like to avoid copying data as much as possible. Is there a more efficient way of doing this that I'm missing?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…