The problem you are seeing is because your code is using the real time each time in the loop when it starts each delay for the period duration - and so time spent in untimed code and jitter due to OS multitasking accumulates, reducing the overall period below what you want to achieve.
To greatly increase the timing accuracy, use the fact that each loop "should" finish at the period (1/sample_rate) after it should have started - and maintain that start time as an absolute calculation rather than the real time, and wait until the period after that absolute start time, and then there is no drift in the timing.
I put your timing into timing_orig and my revised code using absolute times into timing_new - and results are below.
import time
def timing_orig(ratehz,timefun=time.clock):
count=0
while True:
sample_rate=ratehz
time_start=timefun()
count+=1
while (timefun()-time_start) < (1.0/sample_rate):
pass
if count == ratehz:
break
def timing_new(ratehz,timefun=time.clock):
count=0
delta = (1.0/ratehz)
# record the start of the sequence of timed periods
time_start=timefun()
while True:
count+=1
# this period ends delta from "now" (now is the time_start PLUS a number of deltas)
time_next = time_start+delta
# wait until the end time has passed
while timefun()<time_next:
pass
# calculate the idealised "now" as delta from the start of this period
time_start = time_next
if count == ratehz:
break
def timing(functotime,ratehz,ntimes,timefun=time.clock):
starttime = timefun()
for n in range(int(ntimes)):
functotime(ratehz,timefun)
endtime = timefun()
# print endtime-starttime
return ratehz*ntimes/(endtime-starttime)
if __name__=='__main__':
print "new 5000",timing(timing_new,5000.0,10.0)
print "old 5000",timing(timing_orig,5000.0,10.0)
print "new 10000",timing(timing_new,10000.0,10.0)
print "old 10000",timing(timing_orig,10000.0,10.0)
print "new 50000",timing(timing_new,50000.0,10.0)
print "old 50000",timing(timing_orig,50000.0,10.0)
print "new 100000",timing(timing_new,100000.0,10.0)
print "old 100000",timing(timing_orig,100000.0,10.0)
Results:
new 5000 4999.96331002
old 5000 4991.73952992
new 10000 9999.92662005
old 10000 9956.9314274
new 50000 49999.6477761
old 50000 49591.6104893
new 100000 99999.2172809
old 100000 94841.227219
Note I didn't use time.sleep() because it introduced too much jitter. Also, note that even though this minimal example shows very accurate timing even up to 100khz on my Windows laptop, if you put more code into the loop than there is time to execute, the timing will run correspondingly slow.
Apologies I used Python 2.7 which doesn't have the very convenient time.perf_counter() function - add an extra parameter timefun=time.perf_counter() to each of the calls to timing()