I've spent some time trying to understand the grammar.
I strongly suggest readable identifiers. It's very hard to understand what's going on, while I have the strong impression it's actually a really simple grammar
I suggest a simplification version shown below.
- Because your grammar doesn't use recursion there's no real need for the rule and tagged parser types.
- Also use a namespace for the parser artefacts.
- Consider encapsulation the use of a skipper instead of letting the caller decide (
x3::skip[]
)
Add a few helpers to be able to print the AST for verification:
template <typename T> std::ostream& operator<<(std::ostream& os, std::vector<T> const& v) {
os << "{"; for (auto& el : v) os << el << " "; return os << "}";
}
std::ostream& operator<<(std::ostream& os, num_pc const& p) { if (p.k) os << p.k; return os << p.sq; }
std::ostream& operator<<(std::ostream& os, num_rng const& r) { return os << r.pc << "-" << r.last; }
std::ostream& operator<<(std::ostream& os, ccn const& o) { return os << o.c << " " << o.seq; }
std::ostream& operator<<(std::ostream& os, num_not const& nn) { return os << nn.n; }
I'd avoid wrapping the other vector unnecessarily too:
using num_not = std::vector<ccn>;
Use the modern ADAPT macros (as you're using C++14 by definition):
BOOST_FUSION_ADAPT_STRUCT(ast::num_pc, k, sq)
BOOST_FUSION_ADAPT_STRUCT(ast::num_rng, pc, last)
BOOST_FUSION_ADAPT_STRUCT(ast::ccn, c, seq)
BOOST_FUSION_ADAPT_STRUCT(ast::fen, c, n)
-
Live Demo
Live On Coliru
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/fusion/include/as_vector.hpp>
#include <boost/fusion/include/io.hpp>
#include <boost/optional/optional_io.hpp>
#include <boost/optional.hpp>
#include <boost/spirit/home/x3.hpp>
#include <boost/variant.hpp>
#include <iostream>
#include <vector>
namespace ast {
struct num_pc {
boost::optional<char> k;
int sq;
};
struct num_rng {
num_pc pc;
int last;
};
using rng_or_pc = boost::variant<num_rng, num_pc>;
using num_seq = std::vector<rng_or_pc>;
struct ccn {
char c;
boost::optional<num_seq> seq;
};
using num_not = std::vector<ccn>;
struct fen {
char c;
num_not n;
};
template <typename T> std::ostream& operator<<(std::ostream& os, std::vector<T> const& v) {
os << "{"; for (auto& el : v) os << el << " "; return os << "}";
}
std::ostream& operator<<(std::ostream& os, num_pc const& p) { if (p.k) os << p.k; return os << p.sq; }
std::ostream& operator<<(std::ostream& os, num_rng const& r) { return os << r.pc << "-" << r.last; }
std::ostream& operator<<(std::ostream& os, ccn const& o) { return os << o.c << " " << o.seq; }
}
BOOST_FUSION_ADAPT_STRUCT(ast::num_pc, k, sq)
BOOST_FUSION_ADAPT_STRUCT(ast::num_rng, pc, last)
BOOST_FUSION_ADAPT_STRUCT(ast::ccn, c, seq)
BOOST_FUSION_ADAPT_STRUCT(ast::fen, c, n)
namespace FEN {
namespace x3 = boost::spirit::x3;
namespace grammar
{
using namespace x3;
template<typename T>
auto as = [](auto p) { return rule<struct _, T>{} = as_parser(p); };
uint_type const number {};
auto const color = char_("BW");
auto const num_pc = as<ast::num_pc> ( -char_('K') >> number );
auto const num_rng = as<ast::num_rng> ( num_pc >> '-' >> number );
auto const num_seq = as<ast::num_seq> ( (num_rng | num_pc) % ',' );
auto const ccn = as<ast::ccn> ( ':' >> color >> -num_seq );
auto const num_not = as<ast::num_not> ( repeat(2)[ccn] );
auto const fen = as<ast::fen> ( color >> num_not >> -lit('.') );
}
using grammar::fen;
}
int main() {
for (std::string const t : {
"B:W18,24,27,28,K10,K15:B12,16,20,K22,K25,K29",
"B:W18,19,21,23,24,26,29,30,31,32:B1,2,3,4,6,7,9,10,11,12",
"W:B1-20:W31-50", // initial position
"W:B:W", // empty board
"W:B1:W", // only black pieces
"W:B:W50" // only white pieces
}) {
auto b = t.begin(), e = t.end();
ast::fen data;
bool ok = phrase_parse(b, e, FEN::fen, FEN::x3::space, data);
std::cout << t << "
";
if (ok) {
std::cout << "Parsed: " << boost::fusion::as_vector(data) << "
";
} else {
std::cout << "Parse failed:
";
std::cout << " on input: " << t << "
";
}
if (b != e)
std::cout << " Remaining unparsed: '" << std::string(b, e) << '
';
}
}
Prints:
B:W18,24,27,28,K10,K15:B12,16,20,K22,K25,K29
Parsed: (B {W {18 24 27 28 K10 K15 } B {12 16 20 K22 K25 K29 } })
B:W18,19,21,23,24,26,29,30,31,32:B1,2,3,4,6,7,9,10,11,12
Parsed: (B {W {18 19 21 23 24 26 29 30 31 32 } B {1 2 3 4 6 7 9 10 11 12 } })
W:B1-20:W31-50
Parsed: (W {B {1-20 } W {31-50 } })
W:B:W
Parsed: (W {B -- W -- })
W:B1:W
Parsed: (W {B {1 } W -- })
W:B:W50
Parsed: (W {B -- W {50 } })