I just got a new GTX 1070 Founders Addition for my desktop, and I am trying to run tensorflow on this new GPU. I am using tensorflow.device() to run tensorflow on my GPU, but it seems like this is not happening. Instead it is using cpu, and almost all of my systems 8GB of ram. Here is my code:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.image as mpimg
import math
print("
")
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
#
with tf.device("/gpu:0"):
# Helper Function To Print Percentage
def showPercent(num, den, roundAmount):
print( str( round((num / den) * roundAmount )/roundAmount ) + " % ", end="
")
# Defince The Number Of Images To Get
def getFile(dir, getEveryNthLine):
allFiles = list(os.listdir(dir))
fileNameList = []
numOfFiles = len(allFiles)
i = 0
for fichier in allFiles:
if(i % 100 == 0):
showPercent(i, numOfFiles, 100)
if(i % getEveryNthLine == 0):
if(fichier.endswith(".png")):
fileNameList.append(dir + "/" + fichier[0:-4])
i += 1
return fileNameList
# Other Helper Functions
def init_weights(shape):
init_random_dist = tf.truncated_normal(shape, stddev=0.1, dtype=tf.float16)
return tf.Variable(init_random_dist)
def init_bias(shape):
init_bias_vals = tf.constant(0.1, shape=shape, dtype=tf.float16)
return tf.Variable(init_bias_vals)
def conv2d(x, W):
# x --> [batch, H, W, Channels]
# W --> [filter H, filter W, Channels IN, Channels Out]
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")
def max_pool_2by2(x):
# x --> [batch, H, W, Channels]
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
def convolutional_layer(input_x, shape):
W = init_weights(shape)
b = init_bias([ shape[3] ])
return tf.nn.relu(conv2d(input_x, W) + b)
def normal_full_layer(input_layer, size):
input_size = int(input_layer.get_shape()[1])
W = init_weights([input_size, size])
b = init_bias([size])
return tf.matmul(input_layer, W) + b
print("Getting Images")
fileNameList = getFile("F:cartoonset10k-small", 1000)
print("
loaded " + str(len(fileNameList)) + " files")
print("Defining Placeholders")
x_ph = tf.placeholder(tf.float16, shape=[None, 400, 400, 4])
y_ph = tf.placeholder(tf.float16, shape=[None])
print("Defining Conv and Pool layer 1")
convo_1 = convolutional_layer(x_ph, shape=[5, 5, 4, 32])
convo_1_pooling = max_pool_2by2(convo_1)
print("Defining Conv and Pool layer 2")
convo_2 = convolutional_layer(convo_1_pooling, shape=[5, 5, 32, 64])
convo_2_pooling = max_pool_2by2(convo_2)
print("Define Flat later and a Full layer")
convo_2_flat = tf.reshape(convo_2_pooling, [-1, 400 * 400 * 64])
full_layer_one = tf.nn.relu(normal_full_layer(convo_2_flat, 1024))
y_pred = full_layer_one # Add Dropout Later
def getLabels(filePath):
df = []
with open(filePath, "r") as file:
for line in list(file):
tempList = line.replace("
", "").replace('"', "").replace(" ", "").split(",")
df.append({
"attr": tempList[0],
"value":int(tempList[1]),
"maxValue":int(tempList[2])
})
return df
print("
Splitting And Formating X, and Y Data")
x_data = []
y_data = []
numOfFiles = len(fileNameList)
i = 0
for file in fileNameList:
if i % 10 == 0:
showPercent(i, numOfFiles, 100)
x_data.append(mpimg.imread(file + ".png"))
y_data.append(pd.DataFrame(getLabels(file + ".csv"))["value"][0])
i += 1
print("
Conveting x_data to list")
i = 0
for indx in range(len(x_data)):
if i % 10 == 0:
showPercent(i, numOfFiles, 100)
x_data[indx] = x_data[indx].tolist()
i += 1
print("
Performing Train Test Split")
train_x, test_x, train_y, test_y = train_test_split(x_data, y_data, test_size=0.2)
print("Defining Loss And Optimizer")
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(
labels=y_ph,
logits=y_pred
)
)
optimizer = tf.train.AdadeltaOptimizer(learning_rate=0.001)
train = optimizer.minimize(cross_entropy)
print("Define Var Init")
init = tf.global_variables_initializer()
with tf.Session() as sess:
print("Checkpoint Before Initializer")
sess.run(init)
print("Checkpoint After Initializer")
batch_size = 8
steps = 1
i = 0
for i in range(steps):
if i % 10:
print(i / 100, end="
")
batch_x = []
i = 0
for i in np.random.randint(len(train_x), size=batch_size):
showPercent(i, len(train_x), 100)
train_x[i]
batch_x = [train_x[i] for i in np.random.randint(len(train_x), size=batch_size) ]
batch_y = [train_y[i] for i in np.random.randint(len(train_y), size=batch_size) ]
print(sess.run(train, {
x_ph:train_x,
y_ph:train_y,
}))
If you run this, this program seems to quit when I run global_variable_initializer(). It also prints in the terminal:
Allocation of 20971520000 exceeds 10% of system memory.
When looking at my task manager, I see this:
The program is using a lot of my CPU.
The program is using a lot of my Memory.
The program is using none of my GPU.
I am not shore why this is happening. I am using an anaconda environment, and have installed tensorflow-gpu. I would really appreciate anyones suggestions and help.
In addition, when I run this, the program stops after global_variable_initializer(). I am not sure if this is related to the problem above.
Tensorflow is version 1.12. CUDA is version 10.0.130.
Help would be greatly appreciated.
See Question&Answers more detail:
os