The following should work:
import pandas as pd
from sqlalchemy import create_engine
engine = create_engine('mysql://{}:{}@{}/{}'.format(username, password, server, database_name))
connection = engine.connect().connection
cursor = self.connection.cursor()
cursor.execute('call storedProcName(%s, %s, ...)', params)
# Results set 1
column_names = [col[0] for col in cursor.description] # Get column names from MySQL
df1_data = []
for row in cursor.fetchall():
df1_data.append({name: row[i] for i, name in enumerate(column_names)})
# Results set 2
cursor.nextset()
column_names = [col[0] for col in cursor.description] # Get column names from MySQL
df2_data = []
for row in cursor.fetchall():
df2_data.append({name: row[j] for j, name in enumerate(column_names)})
cursor.close()
df1 = pd.DataFrame(df1_data)
df2 = pd.DataFrame(df2_data)
Edit: I've updated the code here to avoid having to manually specify the column names.
Note that the original question only specifies a "local SQL server", not a specific kind of SQL server. This answer works with MySQL, but I haven't tested it with any other variety.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…