I'm having trouble with running an nls regression with seasonal dummies in R.
I'm able to do it without the seasonal dummies, but not with.
This is what I have so far:
year=floor(time(lsts))
> month=round(time(lsts)-year,4)
> month.f=factor(month)
> dummies=model.matrix(~month.f)
hotdogNLS<-nls(lsts~beta1/(1+exp(beta2+beta3*t)),start=list(beta1=2500,beta2=0.5,beta3=-0.5),trace=F)
summary(hotdogNLS)
Formula: lsts ~ beta1/(1 + exp(beta2 + beta3 * t))
Parameters:
Estimate Std. Error t value Pr(>|t|)
beta1 2.030e+03 5.874e+01 34.55 <2e-16 ***
beta2 1.146e+00 5.267e-02 21.76 <2e-16 ***
beta3 -1.116e-02 7.668e-04 -14.56 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 192.3 on 333 degrees of freedom
Number of iterations to convergence: 8
Achieved convergence tolerance: 2.054e-06
How do I include seasonal dummies?
Thanks!
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…