The end result you seek is possible using contourc
or using contour
specifying the same contours (isolines).
This answer extends this answer in Approach 1 using contourc
and provides a simple solution with contour
in Approach 2.
You might ask "Why Approach 1 when Approach 2 is so simple?"
Approach 1 provides a way to directly access the individual isolines in the event you require a numerical approach to searching for intersections.
Approach 1
Example Data:
% MATLAB R2018b
x = 0:0.01:1;
y = 0:0.01:1;
[X,Y] = meshgrid(x,y);
Z = sqrt(X.^3+Y); % Placeholder 1
W = sqrt(X.*Y + X.^2 + Y.^(2/3)); % Placeholder 2
Overlay Single Isoline from 2 Contour Plots
Mimicking this answer and using
v = [.5 0.75 .85 1]; % Values of Z to plot isolines
we can visualize these two functions, Z
, and W
, respectively.
We can overlay the isolines since they share the same (x,y) domain. For example, they both equal 0.8 as displayed below.
val = 0.8; % Isoline value to plot (for Z & W)
Ck = contourc(x,y,Z,[val val]);
Ck2 = contourc(x,y,W,[val val]);
figure, hold on, box on
plot(Ck(1,2:end),Ck(2,2:end),'k-','LineWidth',2,'DisplayName',['Z = ' num2str(val)])
plot(Ck2(1,2:end),Ck2(2,2:end),'b-','LineWidth',2,'DisplayName',['W = ' num2str(val)])
legend('show')
Overlay Multiple Isolines from 2 Contour Plots
We can also do this for more isolines at a time.
v = [1 0.5]; % Isoline values to plot (for Z & W)
figure, hold on, box on
for k = 1:length(v)
Ck = contourc(x,y,Z,[v(k) v(k)]);
Ck2 = contourc(x,y,W,[v(k) v(k)]);
p(k) = plot(Ck(1,2:end),Ck(2,2:end),'k-','LineWidth',2,'DisplayName',['Z = ' num2str(v(k))]);
p2(k) = plot(Ck2(1,2:end),Ck2(2,2:end),'b-','LineWidth',2,'DisplayName',['W = ' num2str(v(k))]);
end
p(2).LineStyle = '--';
p2(2).LineStyle = '--';
legend('show')
Approach 2
Without making it pretty...
% Single Isoline
val = 1.2;
contour(X,Y,Z,val), hold on
contour(X,Y,W,val)
% Multiple Isolines
v = [.5 0.75 .85 1];
contour(X,Y,Z,v), hold on
contour(X,Y,W,v)
It is straightforward to clean these up for presentation. If val
is a scalar (single number), then c1 = contour(X,Y,Z,val);
and c2 = contour(X,Y,W,val)
gives access to the isoline for each contour plot.