I have annual financial data for several stocks which needs to be blown out to a monthly time series. I want to blow it out to a monthly time series so I can compare stocks with differing year-ends, and potentially compute some monthly metrics using some monthly prices which I have somewhere else.
My monthly data looks like this (dput
below):
date | value | sec_id | metric
-----------------------------------------------
2012-06-29 | 2.44376 | 1676 | ROE
2013-06-28 | 1.73054 | 1676 | ROE
2014-06-30 | 1.68171 | 1676 | ROE
2012-05-31 | 2.07297 | 1572 | ROE
2013-05-30 | 1.77073 | 1572 | ROE
2012-06-29 | 5.44376 | 1676 | EPS_GROWTH
2013-06-28 | -0.3054 | 1676 | EPS_GROWTH
2014-06-30 | 3.68171 | 1676 | EPS_GROWTH
2012-05-31 | -1.7297 | 1572 | EPS_GROWTH
2013-05-30 | 6.77073 | 1572 | EPS_GROWTH
What I want is to roll forward all the data points to appear on a monthly basis:
date | value | sec_id | metric
-------------------------------------------------
2012-06-29 | 2.44376 | 1676 | ROE
2012-07-31 | 2.44376 | 1676 | ROE
2012-08-31 | 2.44376 | 1676 | ROE
... ...
2013-05-31 | 2.44376 | 1676 | ROE
2013-06-28 | 1.73054 | 1676 | ROE
... ...
and so on for each security/metric combination. Complicating matters is that the year-ends are not consistent: one of the companies switch from a May year-end to a June year-end in 2000, for example.
Does anyone know a slick, non-for-loop way of doing this in R?
Note that this is an expanded version of a similar (simpler) question I'd asked before. The best answer there used purrr
package, but the best ideas I can come up with involves nested for-loops.
Here's a toy version of my df data frame:
library(tidyverse) # because it's a tibble with lubridate dates
df = structure(list(sec_id = c(1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1572L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L, 1676L),
date = structure(c(6908, 7273, 7638, 8002, 8369, 8734, 9099, 9464, 9829, 10193, 10560, 10925, 11291, 11656, 12020, 12384, 12752, 13117, 13482, 13847, 14211, 14578, 14943, 15308, 15674, 16038, 16402, 16769, 17135, 6784, 7151, 7516, 7881, 8247, 8611, 8975, 9342, 9708, 10073, 10438, 10802, 11200, 11565, 11929, 12293, 12661, 13026, 13391, 13756, 14120, 14487, 14852, 15217, 15583, 15947, 16311, 16678, 17044, 6175, 6542, 6908, 7273, 7638, 8002, 8369, 8734, 9099, 9464, 9829, 10193, 10560, 10925, 11291, 11656, 12020, 12384, 12752, 13117, 13482, 13847, 14211, 14578, 14943, 15308, 15674, 16038, 16402, 16769, 17135, 6420, 6784, 7151, 7516, 7881, 8247, 8611, 8975, 9342, 9708, 10073, 10438, 10802, 11200, 11565, 11929, 12293, 12661, 13026, 13391, 13756, 14120, 14487, 14852, 15217, 15583, 15947, 16311, 16678, 17044), class = "Date"),
value = c(0.291022, 0.197242, -0.470581, -0.406716, -3.294938, 1.22421, 3.140976, 0.250468, 0.091548, -0.100863, 0.058375, 0.24784, 0.178765, 0.099276, 0.25472, -0.033291, 0.124165, 0.050947, 0.243008, 0.1205, -0.239625, -0.231221, 0.365649, 0.163779, 0.024976, 0.08388, 0.154777, 0.016473, -0.272928, 0.237446, 0.391304, 0.064583, 0.286497, -0.571342, 1.05039, -0.001038, -0.018711, -0.162076, -0.599241, -4.071504, -0.37761, 1.694085, 0.045113, -0.064748, 0.098901, 0.823333, 0.793419, 0.759225, 0.329818, 0.199564, -0.616418, 1.164773, 0.877078, -0.325099, -0.294199, 0.272016, -0.706077, -2.57027, 0.129316, 0.131234, 0.143554, 0.131058, 0.099229, 0.057275, -0.121562, 0.051187, 0.15589, 0.188605, 0.186155, 0.154765, 0.153816, 0.166873, 0.181998, 0.183937, 0.211225, 0.186216, 0.177731, 0.161529, 0.187527, 0.199608, 0.136866, 0.10001, 0.13546, 0.148756, 0.143177, 0.144643, 0.153461, 0.140774, 0.099231, 0.117254, 0.141094, 0.166662, 0.154047, 0.172634, 0.062807, 0.145724, 0.13481, 0.11031, 0.087178, 0.033243, -0.122207, -0.22856, 0.171272, 0.187948, 0.186266, 0.154494, 0.238273, 0.352929, 0.494341, 0.50497, 0.459309, 0.178825, 0.270483, 0.43428, 0.254988, 0.149881, 0.187119, 0.048877, -0.111647),
metric = c("EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "EPS_GROWTH", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE", "ROE")),
class = c("tbl_df", "tbl", "data.frame"),
row.names = c(NA, -119L), .Names = c("sec_id", "date", "value", "metric"))
EDIT: My solution so far (takes about ten minutes given my ~100k rows)
library(tidyverse)
if (exists("factors.monthly")) rm(factors.monthly)
for (s in unique(df$sec_id)) {
for (m in unique(df$metric)) {
# cat(s, " : ", m, "
")
x = df %>% filter(sec_id == s) %>% filter(metric == m) %>% mutate(metric = as.character(metric)) %>% select(sec_id, date, value = metric_value, metric)
if (nrow(x) > 0) {
y = x %>%
mutate(date = ceiling_date(date, 'month'), date = map2(date, lead(date - 1, default = last(date)), seq, by = 'month')) %>%
unnest() %>%
mutate(date = date - 1)
if (exists("factors.monthly")) {
factors.monthly = rbind(factors.monthly, y)
} else {
factors.monthly = y
}
}
}
}
See Question&Answers more detail:
os