I think you can use subset:
df_out = df.groupby(df.index_col)
.agg({'age':np.mean, 'height':np.sum, 'weight':np.sum})[['age','height','weight']]
Also you can use pandas
functions:
df_out = df.groupby(df.index_col)
.agg({'age':'mean', 'height':sum, 'weight':sum})[['age','height','weight']]
Sample:
df = pd.DataFrame({'name':['q','q','a','a'],
'address':['a','a','s','s'],
'age':[7,8,9,10],
'height':[1,3,5,7],
'weight':[5,3,6,8]})
print (df)
address age height name weight
0 a 7 1 q 5
1 a 8 3 q 3
2 s 9 5 a 6
3 s 10 7 a 8
df.index_col = ['name', 'address']
df_out = df.groupby(df.index_col)
.agg({'age':'mean', 'height':sum, 'weight':sum})[['age','height','weight']]
print (df_out)
age height weight
name address
a s 9.5 12 14
q a 7.5 4 8
EDIT by suggestion - add reset_index
, here as_index=False
does not work if need index values too:
df_out = df.groupby(df.index_col)
.agg({'age':'mean', 'height':sum, 'weight':sum})[['age','height','weight']]
.reset_index()
print (df_out)
name address age height weight
0 a s 9.5 12 14
1 q a 7.5 4 8