Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.2k views
in Technique[技术] by (71.8m points)

algorithm - Why doesnt my ruby coding for finding prime numbers work?

I am wondering why my code does not work. I am new to the code world so if anyone can break this problem down for me and how would be best to solve it thanks!

I am trying to create a program which will indicate the prime numbers from a list of numbers that I specify.

Please tell my why these two codes do not work! I am confused as to what the second code is trying to do as I found it as someone else's solution to my problem. I am new to coding but I love it so bear with me!

Here is my simple code:

def is_prime?(*nums)

    i = 2
    nums.each do |num|
        while i < num
            if num % i == 0
                puts "#{num} is not a prime"
            else
                puts "#{num} is a prime"
            end
            i += 1
        end
    end
end

....Why does this not work? How can I get it to work? It keeps giving me a weird answer in that it gets stuck on my first number and doesnt seem to process the next numbers I insert when I put:

puts is_prime?(21, 23, 17)

Here is a second code that I wasnt able to run correctly either. Can someone break down what is going on here? How can I get it to work?

def is_prime?(*nums)
    nums.each_with_object({}) do |num, hsh|
        hsh[num] = num > 1 && 2.upto(num - 1).none? {|i| num % i == 0}
    end
end

puts is_prime?(27, 13, 42)

Anyways, I know this question is kind of confusing but if anyone cares to input their 2 cents I would appreciate it! Oh and lastly how do I post code on question board this correctly? I am so new and so confused without a mentor!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Prime numbers exclude evens (except 2 of course), so you can skip them in outer and inner loops. Once you found out number is prime, break the loop. Two those techniques speed up algorithm dramatically, with my experiments from 3.9sec downto 0.2sec on 10000 array.

Standard inneficient algorithm first:

class PrimeNumbers

  def initialize(size)
    @array = (2..size).to_a
    @prime = []
    raise ArgumentError if size < 2
  end

  def process
    @array.each do |i|
      @prime.push(i) if inner_loop(i)
    end
    @prime
  end

  private

  def inner_loop(e)
    is_prime = true
    e.downto(2) do |k|
      next if k == e
      if e % k == 0
        is_prime = false
        break
      end
    end
    is_prime
  end

end

Next step is to ask these questions:

  1. Where to skip even numbers?
  2. why to even iterate through even numbers?
  3. why to iterate beyond a certain point?
  4. Is there any chance to have prime number once you pass half of array?

So let's see 30x faster algorithm (input 50000 size, took 3sec instead of 98sec compare to first algorithm version):

class PrimeNumbers

  def initialize(size)
    raise ArgumentError if size < 2

    @array = 1.step(size,2).to_a
    @array.shift
    @prime = [2]
  end

  def process
    @array.each do |i|
      @prime.push(i) if inner_loop(i)
    end
    @prime
  end

  private

  def inner_loop(e, is_prime = true)
    3.step(e/3, 2) do |k|
      if e % k == 0
        is_prime = false
        break
      end
    end
    is_prime
  end

end

Depends on algorithm efficiency time results can be as following (original array 50000 size):

96.824695s (loop through all array)
92.385227s (loop through all array, skip even numbers in inner loop)
9.251714s  (loop through all array, skip even numbers in outer loop)
5.901579s  (loop through outer loop odds only)
3.480197s  (loop through outer loop odds only, cut half)
2.329469s  (loop through outer loop odds only, cut two thirds)

Why to cut half? Because 67/51 can not be Integer. Why to cut third? There is strong dependency. Look the delimiters for odd numbers:

enter image description here

UPDATE:

Diving deeper into algorithm I've find out that no need to loop through half or even third size of initial array. At the end you can iterate through less than 10% of array to reject composite numbers.

It is relevantly easy to cut 1/2 or 1/3, but to cut 4/5 you have to exclude 9, to cut 7/8 - 9,15,25 etc. It helps to loop through only small set of data ignoring the rest of array. See more details on graph below:

enter image description here

0.398072s  (loop through odds only, cut selective block depend on initial size)

What selective block is? Let's choose Array size, for instance 8000 and see through the variables:

size          = 8000
@loop_end     = 19
@denominators = [9, 15, 21, 27, 33, 39, 45, 51, 25, 35, 45, 55, 65, 75, 85, 49, 63, 77, 91, 105, 119, 81, 99, 117, 135, 153, 121, 143, 165, 187, 169, 195, 221, 225, 255, 289]

Maximum number of values you need to loop through is 5% (19/20)! So to compare a given value no need to loop more than first 5-10% of values.

For the algorithm it is enough to loop through 421 elements to select prime numbers. In case of bigger input @loop_end will adapt. On smaller data set (1000 values) the variables are:

size          = 1000
@loop_end     = 9
@denominators = [9, 15, 21, 25, 35, 49]

Loop through 111 elements helps to find out prime numbers from 1000 elements array. Although @denominators array is bigger than actual denominators (see spreadsheet above) but it doesn't affect correctness of the algorithm. We reject @denominators and loop up to element/@loop_end with step 2 to avoid even numbers.

The optimization to speed algorithm up 320x is really impressive. See the code down below:

class PrimeNumbers

  def initialize(size)
    raise ArgumentError if size < 2
    prepare_vars(size)
  end

  def process
    @array.each do |i|
      next if @denominators.include?(i)
      @prime.push(i) if test_of_prime(i)
    end
    @prime
  end

  private

  def prepare_vars(size)
    @prime = [2]
    @array = 1.step(size,2).to_a
    @array.shift

    @loop_end      = (size**(1/3.0)).to_i
    @loop_end     += 1 if (@loop_end % 2 == 0)
    @denominators  = []

    3.step(@loop_end-2,2).each do |i|
      i.step(@loop_end-2,2).each do |k|
        @denominators << i * k
      end
    end
  end

  def test_of_prime(e, is_prime = true)
    3.step(e/@loop_end, 2) do |k|
      if e % k == 0
        is_prime = false
        break
      end
    end
    is_prime
  end

end

Unit tests are available down below:

require 'minitest/autorun'

class PrimeNumbersTest < Minitest::Unit::TestCase

  def test_valid_1
    assert_equal [2], PrimeNumbers.new(2).process
  end

  def test_valid_2
    assert_equal [2, 3, 5, 7, 11], PrimeNumbers.new(11).process
  end

  def test_valid_3
    assert_equal [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47], PrimeNumbers.new(50).process
  end

  def test_valid_4
    assert_equal [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97], PrimeNumbers.new(100).process
  end

  def test_valid_5
    assert_equal [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797], PrimeNumbers.new(800).process
  end

  def test_valid_6
    assert_equal [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499], PrimeNumbers.new(1500).process
  end

  def test_valid_7
    assert_equal [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...