Fortran provides several ways to create, store, use, and pass data between different "program units": the main program, external procedures, and modules.1 As you know, each program unit can contain internal procedures - which, through host association, have access to any variable or procedure contained within the host. This is often seen as an advantage. As mentioned already by @HighPerformanceMark in his comment, the general guideline for when to use host-association or use-association is:
use host-association when variables are only (or mainly) used by routines declared in the same module, and use use-association when you want to define variables to be used in many modules
From your comments, it sounds like most or all of the host variables in your main program are accessed by each internal procedure (about a dozen or so subroutines). If that's the case, then host-association seems like a very reasonable option, and there's really no need to pass in arguments to each subroutine explicitly. On the other hand, if each subroutine actually uses only a subset of the variables, then it might be reasonable to get more explicit about it.
Like you, I am generally uncomfortable with using variables within a procedure that haven't been declared in an argument list. This is partly because I like how the list of args is self-documenting, and it helps me to reason about the code and how data is manipulated within it. This is even more true when collaborating with other workers, or if I've spent some time away from the code and my memory of it has faded. However, I've discovered there is little reason to avoid host association altogether, as long as you are aware of how it works and have a strategy.
In fact, I tend to use internal procedures and host-association quite often, especially for short functions/subroutines. I find it helpful to loosely think of the host as the "object", its variables as "attributes", and any internal procedures very much like the object's "methods" that do the work. Of course, that's simplifying things, but that's really the point.
For more complex programs I reduce the amount of host-association from the "main" program itself, which then exists primarily to call the various subroutines in the proper order and context. In this case, we can take advantage of use-association
and choose to use
module entities (such as procedures, variables, types, parameters) directly within the program unit that needs them. We can further restrict access to only those module entities that are needed with only:
. This aids readability, the data flow is clearly indicated, and I find that updating the code later is more straightforward. You know, inheritance, encapsulation, and whatnot...but Fortran style. Which is actually pretty good.
Here's an example program structure that works for me and the moderately-sized projects I've worked on in Fortran. I like to keep my widely-used (static) parameters in a separate module (or modules, if grouped according to function). I keep derived types and type-bound procedures in another separate module(s). If it's useful, I make certain module entities private
, so that they are not accessible from other program units. And I guess that's it.
module params
implicit none
public !! All items public/accessible by default.
integer, parameter :: dp = kind(0.d0)
integer, parameter :: nrows = 3
real(dp), parameter :: one=1.0_dp, two=2.0_dp
...
end module params
module types
use params, only: dp, nrows
implicit none
public !! Public by default.
private :: dim2
...
integer, parameter :: dim2 = 3
...
type :: A
integer :: id
real(dp), dimension(nrows,dim2) :: data
contains
procedure, pass :: init
end type A
...
contains
subroutine init(self, ...)
...
end subroutine init
...
end module types
module utils
implicit none
private !! Private by default.
public :: workSub1, workSub2, subErr
...
integer,save :: count=0 !! Accessible only to entities in this module.
...
contains
subroutine workSub1(...)
...
end subroutine workSub1
subroutine workSub2(...)
...
end subroutine workSub2
subroutine subErr(...)
...
end subroutine subErr
end module utils
program main
!! An example program structure.
use params, only: dp
implicit none
real(dp) :: xvar, yvar, zvar
integer :: n, i
logical :: rc
call execute_work_subroutines()
contains !! Internal procs inherit all vars declared or USEd.
subroutine execute_work_subroutines()
use types, only: A
type(A) :: DataSet
!! begin
call DataSet%init(i)
do i = 1,n
call workSub1(xvar,yvar,zvar,A,i,rc)
if (rc) call subErr(rc)
call workSub2(A,rc)
if (rc) call subErr(rc)
enddo
end subroutine execute_work_subroutines
end program main
1There are also submodules, but I am not familiar with them and don't want to give misleading info. They do seem useful for logically separating large modules.