I would leverage the enrich processor to achieve this.
First, you need to create an enrich policy (use the smallest index, let's say it's user_detail
):
PUT /_enrich/policy/user-policy
{
"match": {
"indices": "user_detail",
"match_field": "nic",
"enrich_fields": ["fname", "lname"]
}
}
Then you can execute that policy in order to create an enrichment index
POST /_enrich/policy/user-policy/_execute
The next step requires you to create an ingest pipeline that uses the above enrich policy/index:
PUT /_ingest/pipeline/user_lookup
{
"description" : "Enriching user details with tracks",
"processors" : [
{
"enrich" : {
"policy_name": "user-policy",
"field" : "nic",
"target_field": "tmp",
"max_matches": "1"
}
},
{
"script": {
"if": "ctx.tmp != null",
"source": "ctx.putAll(ctx.tmp); ctx.remove('tmp');"
}
},
{
"remove": {
"field": ["@version", "@timestamp", "type"]
}
}
]
}
Finally, you're now ready to create your target index with the joined data. Simply leverage the _reindex
API combined with the ingest pipeline we've just created:
POST _reindex
{
"source": {
"index": "track_details"
},
"dest": {
"index": "user_tracks",
"pipeline": "user_lookup"
}
}
After running this, the user_tracks
index will contain exactly what you need, for instance:
{
"_index" : "user_tracks",
"_type" : "_doc",
"_id" : "0uA8dXMBU9tMsBeoajlw",
"_score" : 1.0,
"_source" : {
"fname" : "Iraj",
"nic" : "871456365V",
"lname" : "Santhosh",
"track" : "ELK"
}
}
If your source indexes ever change (new users, changed names, etc), you'll need to re-run the above steps, but before doing it, you need to delete the ingest pipeline and the ingest policy (in that order):
DELETE /_ingest/pipeline/user_lookup
DELETE /_enrich/policy/user-policy
After that you can freely re-run the above steps.
PS: Just note that I cheated a bit since the record in user_detail
doesn't have the same nic
in your example, but I guess it was a copy/paste issue.