As known CPU is pipeline, and it works most efficiently if the sequence of commands independent from each other - this known as ILP (Instruction-Level Parallelism): http://en.wikipedia.org/wiki/Instruction-level_parallelism
But is there a really working example which showing the benefits of ILP, at least syntetic example, for CPU x86_64 (but for the same amount of cmp
/jne
in both cases)?
I will write the following example - add up all the elements of the array, but it does not show any advantages of ILP: http://ideone.com/fork/poWfsm
for(i = 0; i < arr_size; i += 8) {
result += arr[i+0] + arr[i+1] +
arr[i+2] + arr[i+3] +
arr[i+4] + arr[i+5] +
arr[i+6] + arr[i+7];
}
register unsigned int v0, v1, v2, v3;
v0 = v1 = v2 = v3 = 0;
for(i = 0; i < arr_size; i += 8) {
v0 += arr[i+0] + arr[i+1];
v1 += arr[i+2] + arr[i+3];
v2 += arr[i+4] + arr[i+5];
v3 += arr[i+6] + arr[i+7];
}
result = v0+v1+v2+v3;
Result:
seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091
X, res: 1000000000
seq: 0.100000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.000000
X, res: 1000000000
seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091
X, res: 1000000000
seq: 0.100000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.000000
X, res: 1000000000
seq: 0.110000 sec, res: 1000000000, ipl: 0.110000 sec, faster 1.000000
X, res: 1000000000
seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091
X, res: 1000000000
seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091
X, res: 1000000000
seq: 0.110000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.100000
X, res: 1000000000
seq: 0.110000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.100000
X, res: 1000000000
seq: 0.110000 sec, res: 1000000000, ipl: 0.120000 sec, faster 0.916667
X, res: 1000000000
faster AVG: 0.975303
ILP even a little slower than Sequential.
C-code: http://ideone.com/fork/poWfsm
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
int main() {
// create and init array
const size_t arr_size = 100000000;
unsigned int *arr = (unsigned int*) malloc(arr_size * sizeof(unsigned int));
size_t i, k;
for(i = 0; i < arr_size; ++i)
arr[i] = 10;
unsigned int result = 0;
clock_t start, end;
const int c_iterations = 10; // iterations of experiment
float faster_avg = 0;
// -----------------------------------------------------------------
for(k = 0; k < c_iterations; ++k) {
result = 0;
// Sequential
start = clock();
for(i = 0; i < arr_size; i += 8) {
result += arr[i+0] + arr[i+1] +
arr[i+2] + arr[i+3] +
arr[i+4] + arr[i+5] +
arr[i+6] + arr[i+7];
}
end = clock();
const float c_time_seq = (float)(end - start)/CLOCKS_PER_SEC;
printf("seq: %f sec, res: %u, ", c_time_seq, result);
// -----------------------------------------------------------------
result = 0;
// IPL-optimization
start = clock();
register unsigned int v0, v1, v2, v3;
v0 = v1 = v2 = v3 = 0;
for(i = 0; i < arr_size; i += 8) {
v0 += arr[i+0] + arr[i+1];
v1 += arr[i+2] + arr[i+3];
v2 += arr[i+4] + arr[i+5];
v3 += arr[i+6] + arr[i+7];
}
result = v0+v1+v2+v3;
end = clock();
const float c_time_ipl = (float)(end - start)/CLOCKS_PER_SEC;
const float c_faster = c_time_seq/c_time_ipl;
printf("ipl: %f sec, faster %f X, res: %u
", c_time_ipl, c_faster, result);
faster_avg += c_faster;
}
faster_avg = faster_avg/c_iterations;
printf("faster AVG: %f
", faster_avg);
return 0;
}
UPDATE:
- Sequential (Disassembler MS Visual Studio 2013):
for (i = 0; i < arr_size; i += 8) {
result += arr[i + 0] + arr[i + 1] +
arr[i + 2] + arr[i + 3] +
arr[i + 4] + arr[i + 5] +
arr[i + 6] + arr[i + 7];
}
000000013F131080 mov ecx,dword ptr [rdx-18h]
000000013F131083 lea rdx,[rdx+20h]
000000013F131087 add ecx,dword ptr [rdx-34h]
000000013F13108A add ecx,dword ptr [rdx-30h]
000000013F13108D add ecx,dword ptr [rdx-2Ch]
000000013F131090 add ecx,dword ptr [rdx-28h]
000000013F131093 add ecx,dword ptr [rdx-24h]
000000013F131096 add ecx,dword ptr [rdx-1Ch]
000000013F131099 add ecx,dword ptr [rdx-20h]
000000013F13109C add edi,ecx
000000013F13109E dec r8
000000013F1310A1 jne main+80h (013F131080h)
- ILP (Disassembler MS Visual Studio 2013):
for (i = 0; i < arr_size; i += 8) {
v0 += arr[i + 0] + arr[i + 1];
000000013F1310F0 mov ecx,dword ptr [rdx-0Ch]
v1 += arr[i + 2] + arr[i + 3];
v2 += arr[i + 4] + arr[i + 5];
000000013F1310F3 mov eax,dword ptr [rdx+8]
000000013F1310F6 lea rdx,[rdx+20h]
000000013F1310FA add ecx,dword ptr [rdx-28h]
000000013F1310FD add eax,dword ptr [rdx-1Ch]
000000013F131100 add ebp,ecx
000000013F131102 mov ecx,dword ptr [rdx-24h]
000000013F131105 add ebx,eax
000000013F131107 add ecx,dword ptr [rdx-20h]
v3 += arr[i + 6] + arr[i + 7];
000000013F13110A mov eax,dword ptr [rdx-10h]
v3 += arr[i + 6] + arr[i + 7];
000000013F13110D add eax,dword ptr [rdx-14h]
000000013F131110 add esi,ecx
000000013F131112 add edi,eax
000000013F131114 dec r8
000000013F131117 jne main+0F0h (013F1310F0h)
}
result = v0 + v1 + v2 + v3;
Compiler command line:
/GS /GL /W3 /Gy /Zc:wchar_t /Zi /Gm- /O2 /Ob2 /sdl /Fd"x64Releasevc120.pdb" /fp:precise /D "_MBCS" /errorReport:prompt /WX- /Zc:forScope /Gd /Oi /MT /Fa"x64Release" /EHsc /nologo /Fo"x64Release" /Ot /Fp"x64ReleaseIPL_reduce_test.pch"
Additional Notes to the answer:
The simple example which showing the benefits of ILP between Unroll-loop and Unroll-loop+ILP for array of 50000000 double elements: http://ideone.com/LgTP6b
faster AVG: 1.152778
- False-Sequential which can be optimized by CPU-pipeline (Disassembler MS Visual Studio 2013) - for add 8 elements in each iteration uses temporary register
xmm0
which then adds to the result xmm6
, i.e. can be used Register renaming:
result += arr[i + 0] + arr[i + 1] + arr[i + 2] + arr[i + 3] +
arr[i + 4] + arr[i + 5] + arr[i + 6] + arr[i + 7];
000000013FBA1090 movsd xmm0,mmword ptr [rcx-10h]
000000013FBA1095 add rcx,40h
000000013FBA1099 addsd xmm0,mmword ptr [rcx-48h]
000000013FBA109E addsd xmm0,mmword ptr [rcx-40h]
000000013FBA10A3 addsd xmm0,mmword ptr [rcx-38h]
000000013FBA10A8 addsd xmm0,mmword ptr [rcx-30h]
000000013FBA10AD addsd xmm0,mmword ptr [rcx-28h]
000000013FBA10B2 addsd xmm0,mmword ptr [rcx-20h]
000000013FBA10B7 addsd xmm0,mmword ptr [rcx-18h]
000000013FBA10BC addsd xmm6,xmm0
000000013FBA10C0 dec rdx
000000013FBA10C3 jne main+90h (013FBA1090h)
- True-Sequential which can not be optimized by CPU-pipeline (Disassembler MS Visual Studio 2013) - for add 8 elements in each iteration uses the result register
xmm6
, i.e. can not be used Register renaming:
result += arr[i + 0];
000000013FFC1090 addsd xmm6,mmword ptr [rcx-10h]
000000013FFC1095 add rcx,40h
result += arr[i + 1];
000000013FFC1099 addsd xmm6,mmword ptr [rcx-48h]
result += arr[i + 2];
000000013FFC109E addsd xmm6,mmword ptr [rcx-40h]
result += arr[i + 3];
000000013FFC10A3 addsd xmm6,mmword ptr [rcx-38h]
result += arr[i + 4];
000000013FFC10A8 addsd xmm6,mmword ptr [rcx-30h]
result += arr[i + 5];
000000013FFC10AD addsd xmm6,mmword ptr [rcx-28h]
result += arr[i + 6];
000000013FFC10B2 addsd xmm6,mmword ptr [rcx-20h]
result += arr[i + 7];
000000013FFC10B7 addsd xmm6,mmword ptr [rcx-18h]
000000013FFC10BC dec rdx
000000013FFC10BF jne main+90h (013FFC1090h)
See Question&Answers more detail:
os