Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
919 views
in Technique[技术] by (71.8m points)

python - Achieving batch matrix multiply using tensordot

I'm trying to achieve the same behaviour as np.matmul parallel matrix multiplication using just tensordot,dot and reshaping etc.

The library I am translating this to using does not have a matmul that supports parallel multiplication, only dot and tensordot.

Additionally I want to avoid iterating over the first dimension, and want to do this using a set of matrix multiplications and reshaping (want as much of it to run using BLAS/GPU as i have large numbers of small matrices to calculate in parallel).

Here is an example:

import numpy as np

angles = np.array([np.pi/4, 2*np.pi/4, 2*np.pi/4])

vectors = np.array([ [1,0],[1,-1],[-1,0]])

s = np.sin(angles)
c = np.cos(angles)

rotations = np.array([[c,s],[-s,c]]).T

print rotations

print vectors

print("Correct: %s" % np.matmul(rotations, vectors.reshape(3,2,1)))

# I want to do this using tensordot/reshaping, i.e just gemm BLAS operations underneath
print("Wrong: %s" % np.tensordot(rotations, vectors, axes=(1,1)))

The output of this is:

Correct: [[[  7.07106781e-01]
  [  7.07106781e-01]]

 [[  1.00000000e+00]
  [  1.00000000e+00]]

 [[ -6.12323400e-17]
  [ -1.00000000e+00]]]


Wrong: [[[  7.07106781e-01   1.11022302e-16  -7.07106781e-01]
  [ -7.07106781e-01  -1.41421356e+00   7.07106781e-01]]

 [[  6.12323400e-17  -1.00000000e+00  -6.12323400e-17]
  [ -1.00000000e+00  -1.00000000e+00   1.00000000e+00]]

 [[  6.12323400e-17  -1.00000000e+00  -6.12323400e-17]
  [ -1.00000000e+00  -1.00000000e+00   1.00000000e+00]]]

Is there a way in which I can modify the second expression in order to get the same result as the first, just using dot/tensordot.

I believe it is possible, and have seen some comments online, but never any examples

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

We need to keep one aligned and keep that also at the output. So, tensordot/dot won't work here. More info on tensordot might explain it somehow on why it won't. But, we can use np.einsum, which in most cases (in my experience) is seen to be marginally faster than np.matmul.

The implementation would look something like this -

np.einsum('ijk,ik->ij',rotations, vectors)

Also, it seems the desired output has one trailing singleton dim. So, append a new axis there with None/np.newaxis, like so -

np.einsum('ijk,ik->ij',rotations, vectors)[...,None]

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...