This looks like good functional code for inserting into a tree. It doesn't mutate the tree during insertion, but instead it creates a new tree containing the value. The basic idea of immutable data is that you don't "keep" things. You calculate values and pass them along to new functions. For example, here's a function that creates a tree from a list:
let tree_of_list l = List.fold_right insert l Leaf
It works by passing the current tree along to each new call to insert
.
It's worth learning to think this way, as many of the benefits of FP derive from the use of immutable data. However, OCaml is a mixed-paradigm language. If you want to, you can use a reference (or mutable record field) to "keep" a tree as it changes value, just as in ordinary imperative programming.
Edit:
You might think the following session shows a modification of a variable x:
# let x = 2;;
val x : int = 2
# let x = 3;;
val x : int = 3
#
However, the way to look at this is that these are two different values that happen to both be named x. Because the names are the same, the old value of x is hidden. But if you had another way to access the old value, it would still be there. Maybe the following will show how things work:
# let x = 2;;
val x : int = 2
# let f () = x + 5;;
val f : unit -> int = <fun>
# f ();;
- : int = 7
# let x = 8;;
val x : int = 8
# f ();;
- : int = 7
#
Creating a new thing named x
with the value 8 doesn't affect what f
does. It's still using the same old x
that existed when it was defined.
Edit 2:
Removing a value from a tree immutably is analogous to adding a value. I.e., you don't actually modify an existing tree. You create a new tree without the value that you don't want. Just as inserting doesn't copy the whole tree (it re-uses large parts of the previous tree), so deleting won't copy the whole tree either. Any parts of the tree that aren't changed can be re-used in the new tree.
Edit 3
Here's some code to remove a value from a tree. It uses a helper function that adjoins two trees that are known to be disjoint (furthermore all values in a are less than all values in b):
let rec adjoin a b =
match a, b with
| Leaf, _ -> b
| _, Leaf -> a
| Node (v, al, ar), _ -> Node (v, al, adjoin ar b)
let rec delete x = function
| Leaf -> Leaf
| Node (v, l, r) ->
if x = v then adjoin l r
else if x < v then Node (v, delete x l, r)
else Node (v, l, delete x r)
(Hope I didn't just spoil your homework!)