I have this function that creates a sort if heatmap for 2d tensors, but it's painfully slow when using larger tensor inputs. How can I speed it up and make it more efficient?
import torch
import numpy as np
import matplotlib.pyplot as plt
def heatmap(
tensor: torch.Tensor,
) -> torch.Tensor:
assert tensor.dim() == 2
def color_tensor(x: torch.Tensor) -> torch.Tensor:
if x < 0:
x = -x
if x < 0.5:
x = x * 2
return (1 - x) * torch.tensor(
[0.9686, 0.9686, 0.9686]
) + x * torch.tensor([0.5725, 0.7725, 0.8706])
else:
x = (x - 0.5) * 2
return (1 - x) * torch.tensor(
[0.5725, 0.7725, 0.8706]
) + x * torch.tensor([0.0196, 0.4431, 0.6902])
else:
if x < 0.5:
x = x * 2
return (1 - x) * torch.tensor(
[0.9686, 0.9686, 0.9686]
) + x * torch.tensor([0.9569, 0.6471, 0.5098])
else:
x = (x - 0.5) * 2
return (1 - x) * torch.tensor(
[0.9569, 0.6471, 0.5098]
) + x * torch.tensor([0.7922, 0.0000, 0.1255])
return torch.stack(
[torch.stack([color_tensor(x) for x in t]) for t in tensor]
).permute(2, 0, 1)
x = torch.randn(3,3)
x = x / x.max()
x_out = heatmap(x)
x_out = (x_out.permute(1, 2, 0) * 255).numpy()
plt.imshow(x_out.astype(np.uint8))
plt.axis("off")
plt.show()
An example of the output:
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…