I've written an implementation in Python using NumPy of vectorized regularized Gradient descent for logistic regression. I've used a numerical check method to check that my implementation is correct. The numerical check verifies my implementation of Linear regression GD, but Logisitc fails, and I cannot find out. Any help would be appreciated. So here goes:
Those are my methods for calculating cost and gradient (update function calculates gradient and updates the parameters):
@staticmethod
def _hypothesis(parameters, features):
return Activation.sigmoid(features.dot(parameters))
@staticmethod
def _cost_function(parameters, features, targets):
m = features.shape[0]
return np.sum(-targets * (np.log(LogisticRegression._hypothesis(parameters, features)) - (1 - targets) * (
np.log(1 - LogisticRegression._hypothesis(parameters, features))))) / m
@staticmethod
def _update_function(parameters, features, targets, extra_param):
regularization_vector = extra_param.get("regularization_vector", 0)
alpha = extra_param.get("alpha", 0.001)
m = features.shape[0]
return parameters - alpha / m * (
features.T.dot(LogisticRegression._hypothesis(parameters, features) - targets)) +
(regularization_vector / m) * parameters
The cost function doesn't have regularization included, but the test I do is with a regularization vector equal to zero so it does not matter. How I am testing:
def numerical_check(features, parameters, targets, cost_function, update_function, extra_param, delta):
gradients = - update_function(parameters, features, targets, extra_param)
parameters_minus = np.copy(parameters)
parameters_plus = np.copy(parameters)
parameters_minus[0, 0] = parameters_minus[0, 0] + delta
parameters_plus[0, 0] = parameters_plus[0, 0] - delta
approximate_gradient = - (cost_function(parameters_plus, features, targets) -
cost_function(parameters_minus, features, targets)) / (2 * delta) / parameters.shape[0]
return abs(gradients[0, 0] - approximate_gradient) <= delta
Basically, I am manually calculating the gradient when I shift the first parameter delta amount to the left and to the right. And then I compare it with the gradients I get from the update function. I am using initial parameters equal to 0 so the updated parameter received is equal to the gradient divided by and the number of features. Also alpha is equal to one. Unfortunately, I am getting different values from the two methods and I cannot find out why. Any advice on how to troubleshoot this problem would be really appreciated.
question from:
https://stackoverflow.com/questions/66052523/vectorized-regularized-gradient-descent-not-passing-numerical-check