Cross Posted at CrossValidated.
I am trying to correct my standard errors, when using an ols distribution in the first stage and using a tobit distribution in the second. For some reason, I am getting different estimates when correcting and I cannot figure out why..
A couple of things to make clear. In this example, the estimate of the IV is only 0.05 off. In my actual data, it is 14% -> 22%. I see that also the intercept and the logSigma are very different. I am not sure to what extent that matters, but I thought to point it out.
The Data
set.seed(2)
a <- 2 # structural parameter of interest
b <- 1 # strength of instrument
rho <- 0.5 # degree of endogeneity
N <- 1000
z <- rnorm(N)
res1 <- rnorm(N)
res2 <- res1*rho + sqrt(1-rho*rho)*rnorm(N)
x <- z*b + res1
ys <- x*a + res2
d <- (ys>0) #dummy variable
y <- round(10-(d*ys))
random_variable <- rnorm(100, mean = 0, sd = 1)
library(data.table)
DT_1 <- data.frame(y,x,z, random_variable)
DT_2 <- structure(list(ID = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50), year = c(1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 2000, 2000, 2000, 2000, 2000, 2000,
2000, 2000, 2000, 2000, 2005, 2005, 2005, 2005, 2005, 2005, 2005,
2005, 2005, 2005, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010,
2010, 2010, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015,
2015), Group = c("A", "A", "A", "A", "B", "B", "B", "B", "C",
"C", "A", "A", "A", "A", "B", "B", "B", "B", "C", "C", "A", "A",
"A", "A", "B", "B", "B", "B", "C", "C", "A", "A", "A", "A", "B",
"B", "B", "B", "C", "C", "A", "A", "A", "A", "B", "B", "B", "B",
"C", "C"), event = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), win_or_lose = c(-1,
-1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0,
-1, -1, -1, -1, 1, 1, 1, 1, 0, 0)), row.names = c(NA, -50L), class = c("tbl_df",
"tbl", "data.frame"))
DT_1 <- setDT(DT_1)
DT_2 <- setDT(DT_2)
DT_2 <- rbind(DT_2 , DT_2 [rep(1:50, 19), ])
sandboxA <- cbind(DT_1, DT_2)
sandboxB <- cbind(DT_1, DT_2)
The Regression
require(AER)
require(censReg)
first_stage_ols <- lm(x ~ z + random_variable + year, data=sandboxA)
yhat <- first_stage_ols$fitted.values
attr(yhat,"class")[1] <- "numeric"
yhat <- as.data.frame(yhat)
yhat <- unlist(yhat)
dataset <- cbind(sandboxA, yhat)
form_2st_yhat <- as.formula("y ~ yhat + random_variable + year")
second_stage_tobit <<- AER::tobit(form_2st_yhat, left=0, right=10, data=sandboxA, na.action = na.exclude)
second_stage_tobit_b <<- censReg(form_2st_yhat, left=0, right=10, data=sandboxA)
summary(second_stage_tobit)
summary(second_stage_tobit_b)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 33.34972 31.49314 1.059 0.290
yhat -2.20394 0.12052 -18.287 <2e-16 ***
random_variable -0.03412 0.11147 -0.306 0.760
year -0.01146 0.01571 -0.730 0.466
Log(scale) 1.08955 0.03628 30.035 <2e-16 ***
Estimate Std. error t value Pr(> t)
(Intercept) 33.34972 31.49313 1.059 0.290
yhat -2.20394 0.12052 -18.287 <2e-16 ***
random_variable -0.03412 0.11147 -0.306 0.760
year -0.01146 0.01571 -0.730 0.466
logSigma 1.08955 0.03628 30.035 <2e-16 ***
Correcting Standard Errors (Link)
reduced.form <- lm(x ~ z + random_variable + year, data=sandboxB)
summary(reduced.form)
consistent.tobit <- censReg(y~fitted(reduced.form)+residuals(reduced.form), left=0, right=10, data=sandboxB)
summary(consistent.tobit)
FUN <- function(x) {
reduced.form <- lm(x ~ z + random_variable + year, data=x)
censReg(y ~ fitted(reduced.form) + residuals(reduced.form))$estimate
}
library(censReg)
set.seed(42)
R <- 200
res <- t(replicate(R, FUN(sandbox[sample(nrow(sandboxB), nrow(sandboxB), replace=T), ])))
library(matrixStats)
b <- consistent.tobit$estimate
SE <- colSds(res)
z <- consistent.tobit$estimate/SE
p <- 2 * pt(-abs(z), df = Inf)
ci <- colQuantiles(res, probs=c(.025, .975))
res <- signif(cbind(b, SE, z, p, ci), 4)
res
b SE z p 2.5% 97.5%
(Intercept) 10.26000 0.0055910 1835.00 0 8.54300 8.5690
fitted(reduced.form) -2.15500 0.0560100 -38.48 0 -0.09655 0.1241
residuals(reduced.form) -2.71400 0.0689700 -39.35 0 -0.12450 0.1522
logSigma 0.05015 0.0009665 51.88 0 0.72270 0.7259