Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
163 views
in Technique[技术] by (71.8m points)

python - Why are numpy functions so slow on pandas series / dataframes?

Consider a small MWE, taken from another question:

DateTime                Data
2017-11-21 18:54:31     1
2017-11-22 02:26:48     2
2017-11-22 10:19:44     3
2017-11-22 15:11:28     6
2017-11-22 23:21:58     7
2017-11-28 14:28:28    28
2017-11-28 14:36:40     0
2017-11-28 14:59:48     1

The goal is to clip all values with an upper bound of 1. My answer uses np.clip, which works fine.

np.clip(df.Data, a_min=None, a_max=1)
array([1, 1, 1, 1, 1, 1, 0, 1])

Or,

np.clip(df.Data.values, a_min=None, a_max=1)
array([1, 1, 1, 1, 1, 1, 0, 1])

Both of which return the same answer. My question is about the relative performance of these two methods. Consider -

df = pd.concat([df]*1000).reset_index(drop=True)

%timeit np.clip(df.Data, a_min=None, a_max=1)
1000 loops, best of 3: 270 μs per loop

%timeit np.clip(df.Data.values, a_min=None, a_max=1)
10000 loops, best of 3: 23.4 μs per loop

Why is there such a massive difference between the two, just by calling values on the latter? In other words...

Why are numpy functions so slow on pandas objects?

question from:https://stackoverflow.com/questions/47893677/why-are-numpy-functions-so-slow-on-pandas-series-dataframes

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Yes, it seems like np.clip is a lot slower on pandas.Series than on numpy.ndarrays. That's correct but it's actually (at least asymptomatically) not that bad. 8000 elements is still in the regime where constant factors are major contributors in the runtime. I think this is a very important aspect to the question, so I'm visualizing this (borrowing from another answer):

# Setup

import pandas as pd
import numpy as np

def on_series(s):
    return np.clip(s, a_min=None, a_max=1)

def on_values_of_series(s):
    return np.clip(s.values, a_min=None, a_max=1)

# Timing setup
timings = {on_series: [], on_values_of_series: []}
sizes = [2**i for i in range(1, 26, 2)]

# Timing
for size in sizes:
    func_input = pd.Series(np.random.randint(0, 30, size=size))
    for func in timings:
        res = %timeit -o func(func_input)
        timings[func].append(res)

%matplotlib notebook

import matplotlib.pyplot as plt
import numpy as np

fig, (ax1, ax2) = plt.subplots(1, 2)

for func in timings:
    ax1.plot(sizes, 
             [time.best for time in timings[func]], 
             label=str(func.__name__))
ax1.set_xscale('log')
ax1.set_yscale('log')
ax1.set_xlabel('size')
ax1.set_ylabel('time [seconds]')
ax1.grid(which='both')
ax1.legend()

baseline = on_values_of_series # choose one function as baseline
for func in timings:
    ax2.plot(sizes, 
             [time.best / ref.best for time, ref in zip(timings[func], timings[baseline])], 
             label=str(func.__name__))
ax2.set_yscale('log')
ax2.set_xscale('log')
ax2.set_xlabel('size')
ax2.set_ylabel('time relative to {}'.format(baseline.__name__))
ax2.grid(which='both')
ax2.legend()

plt.tight_layout()

enter image description here

It's a log-log plot because I think this shows the important features more clearly. For example it shows that np.clip on a numpy.ndarray is faster but it also has a much smaller constant factor in that case. The difference for large arrays is only ~3! That's still a big difference but way less than the difference on small arrays.

However, that's still not an answer to the question where the time difference comes from.

The solution is actually quite simple: np.clip delegates to the clip method of the first argument:

>>> np.clip??
Source:   
def clip(a, a_min, a_max, out=None):
    """
    ...
    """
    return _wrapfunc(a, 'clip', a_min, a_max, out=out)

>>> np.core.fromnumeric._wrapfunc??
Source:   
def _wrapfunc(obj, method, *args, **kwds):
    try:
        return getattr(obj, method)(*args, **kwds)
    # ...
    except (AttributeError, TypeError):
        return _wrapit(obj, method, *args, **kwds)

The getattr line of the _wrapfunc function is the important line here, because np.ndarray.clip and pd.Series.clip are different methods, yes, completely different methods:

>>> np.ndarray.clip
<method 'clip' of 'numpy.ndarray' objects>
>>> pd.Series.clip
<function pandas.core.generic.NDFrame.clip>

Unfortunately is np.ndarray.clip a C-function so it's hard to profile it, however pd.Series.clip is a regular Python function so it's easy to profile. Let's use a Series of 5000 integers here:

s = pd.Series(np.random.randint(0, 100, 5000))

For the np.clip on the values I get the following line-profiling:

%load_ext line_profiler
%lprun -f np.clip -f np.core.fromnumeric._wrapfunc np.clip(s.values, a_min=None, a_max=1)

Timer unit: 4.10256e-07 s

Total time: 2.25641e-05 s
File: numpycorefromnumeric.py
Function: clip at line 1673

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
  1673                                           def clip(a, a_min, a_max, out=None):
  1674                                               """
  ...
  1726                                               """
  1727         1           55     55.0    100.0      return _wrapfunc(a, 'clip', a_min, a_max, out=out)

Total time: 1.51795e-05 s
File: numpycorefromnumeric.py
Function: _wrapfunc at line 55

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
    55                                           def _wrapfunc(obj, method, *args, **kwds):
    56         1            2      2.0      5.4      try:
    57         1           35     35.0     94.6          return getattr(obj, method)(*args, **kwds)
    58                                           
    59                                               # An AttributeError occurs if the object does not have
    60                                               # such a method in its class.
    61                                           
    62                                               # A TypeError occurs if the object does have such a method
    63                                               # in its class, but its signature is not identical to that
    64                                               # of NumPy's. This situation has occurred in the case of
    65                                               # a downstream library like 'pandas'.
    66                                               except (AttributeError, TypeError):
    67                                                   return _wrapit(obj, method, *args, **kwds)

But for np.clip on the Series I get a totally different profiling result:

%lprun -f np.clip -f np.core.fromnumeric._wrapfunc -f pd.Series.clip -f pd.Series._clip_with_scalar np.clip(s, a_min=None, a_max=1)

Timer unit: 4.10256e-07 s

Total time: 0.000823794 s
File: numpycorefromnumeric.py
Function: clip at line 1673

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
  1673                                           def clip(a, a_min, a_max, out=None):
  1674                                               """
  ...
  1726                                               """
  1727         1         2008   2008.0    100.0      return _wrapfunc(a, 'clip', a_min, a_max, out=out)

Total time: 0.00081846 s
File: numpycorefromnumeric.py
Function: _wrapfunc at line 55

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
    55                                           def _wrapfunc(obj, method, *args, **kwds):
    56         1            2      2.0      0.1      try:
    57         1         1993   1993.0     99.9          return getattr(obj, method)(*args, **kwds)
    58                                           
    59                                               # An AttributeError occurs if the object does not have
    60                                               # such a method in its class.
    61                                           
    62                                               # A TypeError occurs if the object does have such a method
    63                                               # in its class, but its signature is not identical to that
    64                                               # of NumPy's. This situation has occurred in the case of
    65                                               # a downstream library like 'pandas'.
    66                                               except (AttributeError, TypeError):
    67                                                   return _wrapit(obj, method, *args, **kwds)

Total time: 0.000804922 s
File: pandascoregeneric.py
Function: clip at line 4969

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
  4969                                               def clip(self, lower=None, upper=None, axis=None, inplace=False,
  4970                                                        *args, **kwargs):
  4971                                                   """
  ...
  5021                                                   """
  5022         1           12     12.0      0.6          if isinstance(self, ABCPanel):
  5023                                                       raise NotImplementedError("clip is not supported yet for panels")
  5024                                           
  5025         1           10     10.0      0.5          inplace = validate_bool_kwarg(inplace, 'inplace')
  5026                                           
  5027         1           69     69.0      3.5          axis = nv.validate_clip_with_axis(axis, args, kwargs)
  5028                                           
  5029                                                   # GH 17276
  5030                                                   # numpy doesn't like NaN as a clip value
  5031                                                   # so ignore
  5032         1          158    158.0      8.1          if np.any(pd.isnull(lower)):
  5033         1            3      3.0      0.2              lower = None
  5034         1           26     26.0      1.3          if np.any(pd.isnull(upper)):
  5035                                                       upper = None
  5036                                           
  5037                                                   # GH 2747 (arguments were reversed)
  5038         1            1      1.0      0.1          if lower is not None and upper is not None:
  5039                                                       if is_scalar(lower) and is_scalar(upper):
  5040                                                           lower, upper = min(lower, upper), max(lower, upper)
  5041                                           
  5042                                                   # fast-path for scalars
  5043         1            1      1.0      0.1          if ((lower is None or (is_scalar(lower) and is_number(lower))) and
  5044         1           28     28.0      1.4                  (upper is None or (is_scalar(upper) and is_number(upper)))):
  5045         1         1654   1654.0     84.3              return self._clip_with_scalar(lower, upper, inplace=inplace)
  5046                                           
  5047                                                   result = self
  5048                                                   if lower is not None:
  5049                                                       result = result.clip_lower(lower, axis, inplace=inplace)
  5050                                                   if upper is not None:
  5051                                                       if inplace:
  5052                                                           result = self
  5053                                                       result = result.clip_upper(upper, axis, inplace=inplace)
  5054                                           
  5055                                                   return result

Total time: 0.000662153 s
File: pandascoregeneric.py
Function: _clip_with_scalar at line 4920

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
  4920                                            

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...