I'm trying to understand how Spark's cache work.
Here is my naive understanding, please let me know if I'm missing something:
val rdd1 = sc.textFile("some data")
rdd1.cache() //marks rdd1 as cached
val rdd2 = rdd1.filter(...)
val rdd3 = rdd1.map(...)
rdd2.saveAsTextFile("...")
rdd3.saveAsTextFile("...")
In the above, rdd1 will be loaded from disk (e.g. HDFS) only once. (when rdd2 is saved I assume) and then from cache (assuming there is enough RAM) when rdd3 is saved)
Now here is my question. Let's say I want to cache rdd2 and rdd3 as they will both be used later on, but I don't need rdd1 after creating them.
Basically there is duplication, isn't it? Since once rdd2 and rdd3 are calculated, I don't need rdd1 anymore, I should probably unpersist it, right? the question is when?
Will this work? (Option A)
val rdd1 = sc.textFile("some data")
rdd1.cache() // marks rdd as cached
val rdd2 = rdd1.filter(...)
val rdd3 = rdd1.map(...)
rdd2.cache()
rdd3.cache()
rdd1.unpersist()
Does spark add the unpersist call to the DAG? or is it done immediately? if it's done immediately, then basically rdd1 will be non cached when I read from rdd2 and rdd3, right?
Should I do it this way instead (Option B)?
val rdd1 = sc.textFile("some data")
rdd1.cache() // marks rdd as cached
val rdd2 = rdd1.filter(...)
val rdd3 = rdd1.map(...)
rdd2.cache()
rdd3.cache()
rdd2.saveAsTextFile("...")
rdd3.saveAsTextFile("...")
rdd1.unpersist()
So the question is this:
Is Option A good enough? i.e. will rdd1
still load the file only once?
Or do I need to go with Option B?
question from:
https://stackoverflow.com/questions/29903675/understanding-sparks-caching 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…