Let's first look at the n^2 algorithm:
dp[0] = 1;
for( int i = 1; i < len; i++ ) {
dp[i] = 1;
for( int j = 0; j < i; j++ ) {
if( array[i] > array[j] ) {
if( dp[i] < dp[j]+1 ) {
dp[i] = dp[j]+1;
}
}
}
}
Now the improvement happens at the second loop, basically, you can improve the speed by using binary search. Besides the array dp[], let's have another array c[], c is pretty special, c[i] means: the minimum value of the last element of the longest increasing sequence whose length is i.
sz = 1;
c[1] = array[0]; /*at this point, the minimum value of the last element of the size 1 increasing sequence must be array[0]*/
dp[0] = 1;
for( int i = 1; i < len; i++ ) {
if( array[i] < c[1] ) {
c[1] = array[i]; /*you have to update the minimum value right now*/
dp[i] = 1;
}
else if( array[i] > c[sz] ) {
c[sz+1] = array[i];
dp[i] = sz+1;
sz++;
}
else {
int k = binary_search( c, sz, array[i] ); /*you want to find k so that c[k-1]<array[i]<c[k]*/
c[k] = array[i];
dp[i] = k;
}
}
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…