Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
243 views
in Technique[技术] by (71.8m points)

Are list comprehensions syntactic sugar for `list(generator expression)` in Python 3?

In Python 3, is a list comprehension simply syntactic sugar for a generator expression fed into the list function?

e.g. is the following code:

squares = [x**2 for x in range(1000)]

actually converted in the background into the following?

squares = list(x**2 for x in range(1000))

I know the output is identical, and Python 3 fixes the surprising side-effects to surrounding namespaces that list comprehensions had, but in terms of what the CPython interpreter does under the hood, is the former converted to the latter, or are there any difference in how the code gets executed?

Background

I found this claim of equivalence in the comments section to this question, and a quick google search showed the same claim being made here.

There was also some mention of this in the What's New in Python 3.0 docs, but the wording is somewhat vague:

Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a list() constructor, and in particular the loop control variables are no longer leaked into the surrounding scope.

question from:https://stackoverflow.com/questions/30096351/are-list-comprehensions-syntactic-sugar-for-listgenerator-expression-in-pyth

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Both work differently. The list comprehension version takes advantage of the special bytecode LIST_APPEND which calls PyList_Append directly for us. Hence it avoids an attribute lookup to list.append and a function call at the Python level.

>>> def func_lc():
    [x**2 for x in y]
...
>>> dis.dis(func_lc)
  2           0 LOAD_CONST               1 (<code object <listcomp> at 0x10d3c6780, file "<ipython-input-42-ead395105775>", line 2>)
              3 LOAD_CONST               2 ('func_lc.<locals>.<listcomp>')
              6 MAKE_FUNCTION            0
              9 LOAD_GLOBAL              0 (y)
             12 GET_ITER
             13 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             16 POP_TOP
             17 LOAD_CONST               0 (None)
             20 RETURN_VALUE

>>> lc_object = list(dis.get_instructions(func_lc))[0].argval
>>> lc_object
<code object <listcomp> at 0x10d3c6780, file "<ipython-input-42-ead395105775>", line 2>
>>> dis.dis(lc_object)
  2           0 BUILD_LIST               0
              3 LOAD_FAST                0 (.0)
        >>    6 FOR_ITER                16 (to 25)
              9 STORE_FAST               1 (x)
             12 LOAD_FAST                1 (x)
             15 LOAD_CONST               0 (2)
             18 BINARY_POWER
             19 LIST_APPEND              2
             22 JUMP_ABSOLUTE            6
        >>   25 RETURN_VALUE

On the other hand the list() version simply passes the generator object to list's __init__ method which then calls its extend method internally. As the object is not a list or tuple, CPython then gets its iterator first and then simply adds the items to the list until the iterator is exhausted:

>>> def func_ge():
    list(x**2 for x in y)
...
>>> dis.dis(func_ge)
  2           0 LOAD_GLOBAL              0 (list)
              3 LOAD_CONST               1 (<code object <genexpr> at 0x10cde6ae0, file "<ipython-input-41-f9a53483f10a>", line 2>)
              6 LOAD_CONST               2 ('func_ge.<locals>.<genexpr>')
              9 MAKE_FUNCTION            0
             12 LOAD_GLOBAL              1 (y)
             15 GET_ITER
             16 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             19 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             22 POP_TOP
             23 LOAD_CONST               0 (None)
             26 RETURN_VALUE
>>> ge_object = list(dis.get_instructions(func_ge))[1].argval
>>> ge_object
<code object <genexpr> at 0x10cde6ae0, file "<ipython-input-41-f9a53483f10a>", line 2>
>>> dis.dis(ge_object)
  2           0 LOAD_FAST                0 (.0)
        >>    3 FOR_ITER                15 (to 21)
              6 STORE_FAST               1 (x)
              9 LOAD_FAST                1 (x)
             12 LOAD_CONST               0 (2)
             15 BINARY_POWER
             16 YIELD_VALUE
             17 POP_TOP
             18 JUMP_ABSOLUTE            3
        >>   21 LOAD_CONST               1 (None)
             24 RETURN_VALUE
>>>

Timing comparisons:

>>> %timeit [x**2 for x in range(10**6)]
1 loops, best of 3: 453 ms per loop
>>> %timeit list(x**2 for x in range(10**6))
1 loops, best of 3: 478 ms per loop
>>> %%timeit
out = []
for x in range(10**6):
    out.append(x**2)
...
1 loops, best of 3: 510 ms per loop

Normal loops are slightly slow due to slow attribute lookup. Cache it and time again.

>>> %%timeit
out = [];append=out.append
for x in range(10**6):
    append(x**2)
...
1 loops, best of 3: 467 ms per loop

Apart from the fact that list comprehension don't leak the variables anymore one more difference is that something like this is not valid anymore:

>>> [x**2 for x in 1, 2, 3] # Python 2
[1, 4, 9]
>>> [x**2 for x in 1, 2, 3] # Python 3
  File "<ipython-input-69-bea9540dd1d6>", line 1
    [x**2 for x in 1, 2, 3]
                    ^
SyntaxError: invalid syntax

>>> [x**2 for x in (1, 2, 3)] # Add parenthesis
[1, 4, 9]
>>> for x in 1, 2, 3: # Python 3: For normal loops it still works
    print(x**2)
...
1
4
9

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...