The MNIST For ML Beginners
tutorial is giving me an error when I run print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
. Everything else runs fine.
Error and trace:
InternalErrorTraceback (most recent call last)
<ipython-input-16-219711f7d235> in <module>()
----> 1 print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
338 try:
339 result = self._run(None, fetches, feed_dict, options_ptr,
--> 340 run_metadata_ptr)
341 if run_metadata:
342 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
562 try:
563 results = self._do_run(handle, target_list, unique_fetches,
--> 564 feed_dict_string, options, run_metadata)
565 finally:
566 # The movers are no longer used. Delete them.
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
635 if handle is None:
636 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
--> 637 target_list, options, run_metadata)
638 else:
639 return self._do_call(_prun_fn, self._session, handle, feed_dict,
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args)
657 # pylint: disable=protected-access
658 raise errors._make_specific_exception(node_def, op, error_message,
--> 659 e.code)
660 # pylint: enable=protected-access
661
InternalError: Dst tensor is not initialized.
[[Node: _recv_Placeholder_3_0/_1007 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/gpu:0", send_device="/job:localhost/replica:0/task:0/cpu:0", send_device_incarnation=1, tensor_name="edge_312__recv_Placeholder_3_0", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]
[[Node: Mean_1/_1011 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_319_Mean_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
I just switched to a more recent version of CUDA, so maybe this has something to do with that? Seems like this error is about copying a tensor to the GPU.
Stack: EC2 g2.8xlarge machine, Ubuntu 14.04
UPDATE:
print(sess.run(accuracy, feed_dict={x: batch_xs, y_: batch_ys}))
runs fine. This leads me to suspect that the issue is that I'm trying to transfer a huge tensor to the GPU and it can't take it. Small tensors like a minibatch work just fine.
UPDATE 2:
I've figured out exactly how big the tensors have to be to cause this issue:
batch_size = 7509 #Works.
print(sess.run(accuracy, feed_dict={x: mnist.test.images[0:batch_size], y_: mnist.test.labels[0:batch_size]}))
batch_size = 7510 #Doesn't work. Gets the Dst error.
print(sess.run(accuracy, feed_dict={x: mnist.test.images[0:batch_size], y_: mnist.test.labels[0:batch_size]}))
question from:
https://stackoverflow.com/questions/37313818/tensorflow-dst-tensor-is-not-initialized