I have the following MATLAB code:
n_part = 5; %count the participants
options.params.cutoff=1;
options.params.lags=0;% use zero, to set n=0 as in eq 4 in the paper, otherwise you will include historical values in the model (one connectivity matrix per historical value)
options.params.autocorrelation=0; % to exclude self dependancies, since we have already take care of this. This makes the diagonal values equal to zero in the model
options.params.concurrent=1; % must be one to include the concurrent information
options.params.pass_th=0;
options.perc=[0.7 0.3]; % First argument is the partition size to calculate SV, second argument is the size of the test sample
options.rep_svd=10; % how many times to repeat the svd decomposition to maximize out of sample data predictions
options.rep_model=1; % if number of frames not empty, how many times recalculate the model based on the minimum required frames
parfor i=1:n_part
display(['Running participant ' num2str(i)])
options.min_frames=size(signal,1); %how many frames to include in the model
options.SV=SV; %assign SV to options
end
I want to optimize the for
loop, since each iteration is independent. So, first, I tried this:
parfor i=1:n_part
.
.
.
end
That gave me this error:
Error: The variable options in a parfor cannot be classified.
The error occurs on this line:
parfor i=1:n_part
I then tried this:
parpool(2);
parfor i=1:n_part
display(['Running participant ' num2str(i)])
y=TC{i};
TC_no_AC_LS{i}=remove_autocorrelation(y,n_ar);
frameSV(i).signal=TC_no_AC_LS{i}; % pick the signal with no autocorrelation
[SV, R]=model_tsvd(signal,options); %calculate the SVD
frameSV(i).min_frames = size(frameSV(i).signal, 1);
frameSV(i).SV = SV;
end
for i = 1 : n_part
options.min_frames= frameSV(i).min_frames; %how many frames to include in the model
options.SV = frameSV(i).SV; %assign SV to options
signal = frameSV(i).signal;
m(:,:,i) = make_model_tsvd(signal, options); % calculate the model
end
But got this error:
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 2).
Error using connectotyping_example2>(parfor supply)
Undefined function 'frameSV' for input arguments of type 'double'.
Error in connectotyping_example2 (line 27)
parfor i=1:n_part
Is there a way to fix this, so the iterations of the loop can run in parallel?
question from:
https://stackoverflow.com/questions/65941634/using-parfor-with-options-to-parallelize-code 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…