For some purposes, I need to regress several time series on a constant only. The LHS variable (endog
in statsmodels.OLS
) looks like this (call it df
)
0 1 2 ... 22 23 24
1963-07-31 0.023377 0.008570 0.014301 ... 0.018695 0.002118 -0.004114
1963-08-31 -0.021446 -0.040604 -0.036767 ... 0.008298 0.041109 0.021422
1963-09-30 -0.004617 0.027603 0.007309 ... 0.003580 0.012020 -0.020118
1963-10-31 -0.009448 -0.026168 -0.005506 ... -0.017357 0.009267 -0.010689
1963-11-30 -0.017838 -0.026986 -0.004256 ... -0.007105 -0.012545 0.022867
... ... ... ... ... ... ...
2014-01-31 0.071162 0.001646 0.003898 ... -0.011182 -0.020756 -0.020589
2014-02-28 -0.014462 -0.018556 -0.008404 ... -0.008159 0.003452 -0.015939
2014-03-31 -0.048761 0.004809 0.001056 ... 0.021843 0.035821 0.033281
2014-04-30 -0.051516 -0.037292 -0.025415 ... 0.036954 0.041226 0.000193
2014-05-31 -0.033725 -0.026068 -0.013516 ... 0.016622 0.010879 0.006987
and the RHS (exog
in statsmodels.OLS
) is a column of ones, call it x
.
I am trying to get a robust variance-covariance matrix of the estimates by running
mod=sm.OLS(endog=df, exog=x)
res=mod.fit(cov_type='HAC',cov_kwds={'maxlags':1})
but I get the error
ValueError: shapes (2,611,610) and (610,611,2) not aligned: 610 (dim 2) != 611 (dim 1)
Why is that the case? How do I need to modify this to make it works?
question from:
https://stackoverflow.com/questions/65952179/error-in-statsmodels-newey-west-robust-variance-covariance-matrix 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…