The most robust way of making an object dtype array of a given shape, is to initial one, and assign values:
In [107]: res = np.empty(1, object)
In [108]: res
Out[108]: array([None], dtype=object)
In [109]: res[0] = np.array([[0]], 'uint8')
In [110]: res
Out[110]: array([array([[0]], dtype=uint8)], dtype=object)
np.array
is a complicated function. Its first, apparent, priority is to make a multidimensional array with the given dtype. It will change the dtype of the inputs as needed. What you seek is something it does as a fallback strategy.
In [112]: np.array([np.array([[0]]), None], object)
Out[112]: array([array([[0]]), None], dtype=object)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…