There are a couple of issues with your code. First, by using the queues as you are, you are in effect creating your own process pool and have no need for using the multiprocessing.Pool
class at all. You are using a pool initializer as an actual pool worker and it's a bit of a misuse of this class; you would be better off to just use regular Process
instances (my opinion, anyway).
Second, although it is well and good that you are putting message DONE
to the writer_process
to signal it to terminate, you have not done similarly for the self.n_cpus
worker
processes, which are looking for 'STOP' messages, and therefore the reader
function needs to put self.n_cpus
STOP
messages in the task queue:
from multiprocessing import Process, Queue
class Computation():
def __init__(self, K):
self.task_queue = Queue()
self.completed_queue = Queue()
self.n_cpus = K
def reader(self,):
with open(db, "r") as db:
... # Read an item
self.task_queue.put(item)
# signal to the worker processes to terminate:
for _ in range(self.n_cpus):
self.task_queue.put('STOP')
def worker(self,):
while True:
item = self.task_queue.get(True)
if item == "STOP":
break
self.process_item(item)
def writer_process(self,):
while True:
f = self.completed_queue.get(True)
if f == "DONE":
break
self.write_f(f)
def run(self):
processes = [Process(target=self.worker) for _ in range(self.n_cpus)]
for p in processes:
p.start()
writer = Process(target=self.writer_process, args=())
writer.start()
self.reader()
for p in processes:
p.join()
self.completed_queue.put("DONE")
writer.join()
Personally, instead of using 'STOP' and 'DONE' as the sentinel messages, I would use None
instead, assuming that is not a valid actual message. I have tested the above code where reader
just processed strings in a list and self.process_item(item)
simply appended ' done' to the each of those strings and put the modified string on the completed_queue
and replaced self.write_f
in the writer_process
with a print
call. I did not see any problems with the code as is.
Update to use a Managed Queue
Disclaimer: I have had no experience using mpi4py and have no idea how the queue proxies would get distributed across different computers. The above code may not be sufficient as suggested by the following article, How to share mutliprocessing queue object between multiple computers. However, that code is creating instances of Queue.Queue (that code is Python 2 code) and not the proxies that are returned by the multiprocessing.SyncManager. The documentation on this is very poor. Try the above change to see if it works better (it will be slower).
Because the proxy returned by manager.Queue()
, I have had to rearrange the code a bit; the queues are now being passed explicitly as arguments to the process functions:
from multiprocessing import Process, Manager
class Computation():
def __init__(self, K):
self.n_cpus = K
def reader(self, task_queue):
with open(db, "r") as db:
... # Read an item
# signal to the worker processes to terminate:
for _ in range(self.n_cpus):
task_queue.put('STOP')
def worker(self, task_queue, completed_queue):
while True:
item = task_queue.get(True)
if item == "STOP":
break
self.process_item(item)
def writer_process(self, completed_queue):
while True:
f = completed_queue.get(True)
if f == "DONE":
break
self.write_f(f)
def run(self):
with Manager() as manager:
task_queue = manager.Queue()
completed_queue = manager.Queue()
processes = [Process(target=self.worker, args=(task_queue, completed_queue)) for _ in range(self.n_cpus)]
for p in processes:
p.start()
writer = Process(target=self.writer_process, args=(completed_queue,))
writer.start()
self.reader(task_queue)
for p in processes:
p.join()
completed_queue.put("DONE")
writer.join()