As @Robert Dodier mentioned in the comments, the reason is that the calculations are simpler. I will use a stadium of 20 people instead of 20000 as an example:
Method 1:
Probability of not getting 10 heads for one individual
= 1 - probability of getting 10 heads
= 1 - 10!/(10!0!)*0.5^10*(1-0.5)^0
= 0.9990234375
Probability of at least one person in the stadium getting 10 heads
= 1 - P(of nobody in the stadium getting 10 heads)
= 1 - 0.9990234375**20 (because all coin tosses are independent)
= 0.019351109194852834
Method 2:
Probability of getting 10 heads for one individual
= 10!/(10!0!)*0.5^10*(1-0.5)^0
= 0.0009765625
Probability of exactly 1, 2, 3, etc. persons in the stadium getting 10 heads:
p1 = 20!/(1!19!)*0.0009765625^1*(1-0.0009765625)^(20-1) = 0.019172021325613825
p2 = 20!/(2!18!)*0.0009765625^2*(1-0.0009765625)^(20-2) = 0.00017803929872270904
p3 = 20!/(3!17!)*0.0009765625^3*(1-0.0009765625)^(20-3) = 1.0442187608370032e-06
p4 = 20!/(4!16!)*0.0009765625^4*(1-0.0009765625)^(20-4) = 4.338152232216289e-09
p5 = 20!/(5!15!)*0.0009765625^5*(1-0.0009765625)^(20-5) = 1.3569977656981548e-11
p6 = 20!/(6!14!)*0.0009765625^6*(1-0.0009765625)^(20-6) = 3.316221323798032e-14
p7 = 20!/(7!13!)*0.0009765625^7*(1-0.0009765625)^(20-7) = 6.483326146232712e-17
p8 = 20!/(8!12!)*0.0009765625^8*(1-0.0009765625)^(20-8) = 1.029853859983202e-19
p9 = 20!/(9!11!)*0.0009765625^9*(1-0.0009765625)^(20-9) = 1.342266353839299e-22
p10 = 20!/(10!10!)*0.0009765625^10*(1-0.0009765625)^(20-10) = 1.443297154665913e-25
p11 = 20!/(11!9!)*0.0009765625^11*(1-0.0009765625)^(20-11) = 1.2825887804726853e-28
p12 = 20!/(12!8!)*0.0009765625^12*(1-0.0009765625)^(20-12) = 9.403143551852531e-32
p13 = 20!/(13!7!)*0.0009765625^13*(1-0.0009765625)^(20-13) = 5.656451493707817e-35
p14 = 20!/(14!6!)*0.0009765625^14*(1-0.0009765625)^(20-14) = 2.7646390487330485e-38
p15 = 20!/(15!5!)*0.0009765625^15*(1-0.0009765625)^(20-15) = 1.0809927854283668e-41
p16 = 20!/(16!4!)*0.0009765625^16*(1-0.0009765625)^(20-16) = 3.3021529369146104e-45
p17 = 20!/(17!3!)*0.0009765625^17*(1-0.0009765625)^(20-17) = 7.59508466888531e-49
p18 = 20!/(18!2!)*0.0009765625^18*(1-0.0009765625)^(20-18) = 1.2373875315877011e-52
p19 = 20!/(19!1!)*0.0009765625^19*(1-0.0009765625)^(20-19) = 1.2732289258503896e-56
p20 = 20!/(20!0!)*0.0009765625^20*(1-0.0009765625)^(20-20) = 6.223015277861142e-61
Probability of at least one person in the stadium getting 10 heads
= p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 +
p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20
= 0.01935110919485281
So the result is the same (the tiny difference is due to floating point precision), but as you can see the first calculation is slightly simpler for 20 people, never mind for 20000 ;)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…