Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
144 views
in Technique[技术] by (71.8m points)

javascript - Tensorflow.js real time object detection

Attempting to build a web app that uses tensorflow.js (coco-ssd) for real-time object detection but when I load the web page up there is no camera or anything going on, but I can't understand why. Any ideas? the code should just load up a simple box that uses the device camera as the media stream within javascript but nothing happens. its all linked correctly

<--HTML-->

    <!DOCTYPE html>
    <html lang="en">
    <head>
        <meta charset="UTF-8" />
        <title>Lets Scan</title>
        <!-- Load TensorFlow.js-->
        <script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js"></script>
        <!-- Load the coco-ssd model. -->
        <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/coco-ssd"></script>
        <!-- Load React. -->
        <script src="https://unpkg.com/react@16/umd/react.development.js" crossorigin></script>
        <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js" crossorigin></script>

        <script src="https://unpkg.com/[email protected]/babel.min.js"></script>
        <link rel="stylesheet" href="CSS/LetsScan.css">
    </head>
    <body>
        <!-- Navigation Bar Code-->
        <nav class="navbar">
            <a href="Home.html"> Home</a>
            <a href="LetsScan.html">Lets Scan</a>
            <a href="AboutUs.html">About Us</a>
            <a href="ContactUs.html">Contact Us</a>
        </nav>
        <!--
        <div class="contentarea">
            <div class="camera">
                <video id="video">Video stream not available.</video>
            </div>
            <div><button id="startbutton">Take photo</button></div>

            <!-- Camera Output --
            <canvas id="canvas"></canvas>
            <div class="output">
                <img id="photo" alt="The screen capture will appear in this box.">
            </div>


        </div>
          <script src="js/letsscan.js"></script>
        -->

        <!-- Load our React component. -->
        <script src="letsscan.js" type="text/babel"></script>

        <!-- We will put our React component inside this div. -->
        <div id="root"></div>
    </body>
    </html>

<--JS-->

        class App extends React.Component {
        // reference to both the video and canvas
        videoRef = React.createRef();
        canvasRef = React.createRef();

        // we are gonna use inline style
        styles = {
            position: 'fixed',
            top: 150,
            left: 150,
        };


        detectFromVideoFrame = (model, video) => {
            model.detect(video).then(predictions => {
                this.showDetections(predictions);

                requestAnimationFrame(() => {
                    this.detectFromVideoFrame(model, video);
                });
            }, (error) => {
                console.log("Couldn't start the webcam")
                console.error(error)
            });
        };

        showDetections = predictions => {
            const ctx = this.canvasRef.current.getContext("2d");
            ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
            const font = "24px helvetica";
            ctx.font = font;
            ctx.textBaseline = "top";

            predictions.forEach(prediction => {
                const x = prediction.bbox[0];
                const y = prediction.bbox[1];
                const width = prediction.bbox[2];
                const height = prediction.bbox[3];
                // Draw the bounding box.
                ctx.strokeStyle = "#2fff00";
                ctx.lineWidth = 1;
                ctx.strokeRect(x, y, width, height);
                // Draw the label background.
                ctx.fillStyle = "#2fff00";
                const textWidth = ctx.measureText(prediction.class).width;
                const textHeight = parseInt(font, 10);
                // draw top left rectangle
                ctx.fillRect(x, y, textWidth + 10, textHeight + 10);
                // draw bottom left rectangle
                ctx.fillRect(x, y + height - textHeight, textWidth + 15, textHeight + 10);

                // Draw the text last to ensure it's on top.
                ctx.fillStyle = "#000000";
                ctx.fillText(prediction.class, x, y);
                ctx.fillText(prediction.score.toFixed(2), x, y + height - textHeight);
            });
        };

        componentDidMount() {
            if (navigator.mediaDevices.getUserMedia || navigator.mediaDevices.webkitGetUserMedia) {
                // define a Promise that'll be used to load the webcam and read its frames
                const webcamPromise = navigator.mediaDevices
                    .getUserMedia({
                        video: true,
                        audio: false,
                    })
                    .then(stream => {
                        // pass the current frame to the window.stream
                        window.stream = stream;
                        // pass the stream to the videoRef
                        this.videoRef.current.srcObject = stream;

                        return new Promise(resolve => {
                            this.videoRef.current.onloadedmetadata = () => {
                                resolve();
                            };
                        });
                    }, (error) => {
                        console.log("Couldn't start the webcam")
                        console.error(error)
                    });

                // define a Promise that'll be used to load the model
                const loadlModelPromise = cocoSsd.load();

                // resolve all the Promises
                Promise.all([loadlModelPromise, webcamPromise])
                    .then(values => {
                        this.detectFromVideoFrame(values[0], this.videoRef.current);
                    })
                    .catch(error => {
                        console.error(error);
                    });
            }
        }

        // here we are returning the video frame and canvas to draw,
        // so we are in someway drawing our video "on the go"
        render() {
            return (
                <div>
                    <video
                        style={this.styles}
                        autoPlay
                        muted
                        playsInline
                        ref={this.videoRef}
                        width="720"
                        height="600"
                    />
                    <canvas style={this.styles} ref={this.canvasRef} width="720" height="650" />
                </div>
            );
        }
    }

    const domContainer = document.querySelector('#root');
    ReactDOM.render(React.createElement(App), domContainer);
question from:https://stackoverflow.com/questions/65892491/tensorflow-js-real-time-object-detection

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)
Waitting for answers

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...