I am trying to return the ROC curves for a test dataset using the MLevals
package.
# Load data
train <- readRDS(paste0("Data/train.rds"))
test <- readRDS(paste0("Data/test.rds"))
# Create factor class
train$class <- ifelse(train$class == 1, 'yes', 'no')
# Set up control function for training
ctrl <- trainControl(method = "cv",
number = 5,
returnResamp = 'none',
summaryFunction = twoClassSummary(),
classProbs = T,
savePredictions = T,
verboseIter = F)
gbmGrid <- expand.grid(interaction.depth = 10,
n.trees = 18000,
shrinkage = 0.01,
n.minobsinnode = 4)
# Build using a gradient boosted machine
set.seed(5627)
gbm <- train(class ~ .,
data = train,
method = "gbm",
metric = "ROC",
tuneGrid = gbmGrid,
verbose = FALSE,
trControl = ctrl)
# Predict results -
pred <- predict(gbm, newdata = test, type = "prob")[,"yes"]
roc <- evalm(data.frame(pred, test$class))
I have used the following post, ROC curve for the testing set using Caret package,
to try and plot the ROC from test data using MLeval
and yet I get the following error message:
MLeval: Machine Learning Model Evaluation
Input: data frame of probabilities of observed labels
Error in names(x) <- value :
'names' attribute [3] must be the same length as the vector [2]
Can anyone please help? Thanks.
question from:
https://stackoverflow.com/questions/65829802/how-to-get-test-data-roc-plot-from-mleval 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…