Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
318 views
in Technique[技术] by (71.8m points)

Drop all duplicate rows across multiple columns in Python Pandas

The pandas drop_duplicates function is great for "uniquifying" a dataframe. However, one of the keyword arguments to pass is take_last=True or take_last=False, while I would like to drop all rows which are duplicates across a subset of columns. Is this possible?

    A   B   C
0   foo 0   A
1   foo 1   A
2   foo 1   B
3   bar 1   A

As an example, I would like to drop rows which match on columns A and C so this should drop rows 0 and 1.

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This is much easier in pandas now with drop_duplicates and the keep parameter.

import pandas as pd
df = pd.DataFrame({"A":["foo", "foo", "foo", "bar"], "B":[0,1,1,1], "C":["A","A","B","A"]})
df.drop_duplicates(subset=['A', 'C'], keep=False)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...