Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.3k views
in Technique[技术] by (71.8m points)

matplotlib - What's the fastest way of checking if a point is inside a polygon in python

I found two main methods to look if a point belongs inside a polygon. One is using the ray tracing method used here, which is the most recommended answer, the other is using matplotlib path.contains_points (which seems a bit obscure to me). I will have to check lots of points continuously. Does anybody know if any of these two is more recommendable than the other or if there are even better third options?

UPDATE:

I checked the two methods and matplotlib looks much faster.

from time import time
import numpy as np
import matplotlib.path as mpltPath

# regular polygon for testing
lenpoly = 100
polygon = [[np.sin(x)+0.5,np.cos(x)+0.5] for x in np.linspace(0,2*np.pi,lenpoly)[:-1]]

# random points set of points to test 
N = 10000
points = np.random.rand(N,2)


# Ray tracing
def ray_tracing_method(x,y,poly):

    n = len(poly)
    inside = False

    p1x,p1y = poly[0]
    for i in range(n+1):
        p2x,p2y = poly[i % n]
        if y > min(p1y,p2y):
            if y <= max(p1y,p2y):
                if x <= max(p1x,p2x):
                    if p1y != p2y:
                        xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
                    if p1x == p2x or x <= xints:
                        inside = not inside
        p1x,p1y = p2x,p2y

    return inside

start_time = time()
inside1 = [ray_tracing_method(point[0], point[1], polygon) for point in points]
print("Ray Tracing Elapsed time: " + str(time()-start_time))

# Matplotlib mplPath
start_time = time()
path = mpltPath.Path(polygon)
inside2 = path.contains_points(points)
print("Matplotlib contains_points Elapsed time: " + str(time()-start_time))

which gives,

Ray Tracing Elapsed time: 0.441395998001
Matplotlib contains_points Elapsed time: 0.00994491577148

Same relative difference was obtained one using a triangle instead of the 100 sides polygon. I will also check shapely since it looks a package just devoted to these kind of problems

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You can consider shapely:

from shapely.geometry import Point
from shapely.geometry.polygon import Polygon

point = Point(0.5, 0.5)
polygon = Polygon([(0, 0), (0, 1), (1, 1), (1, 0)])
print(polygon.contains(point))

From the methods you've mentioned I've only used the second, path.contains_points, and it works fine. In any case depending on the precision you need for your test I would suggest creating a numpy bool grid with all nodes inside the polygon to be True (False if not). If you are going to make a test for a lot of points this might be faster (although notice this relies you are making a test within a "pixel" tolerance):

from matplotlib import path
import matplotlib.pyplot as plt
import numpy as np

first = -3
size  = (3-first)/100
xv,yv = np.meshgrid(np.linspace(-3,3,100),np.linspace(-3,3,100))
p = path.Path([(0,0), (0, 1), (1, 1), (1, 0)])  # square with legs length 1 and bottom left corner at the origin
flags = p.contains_points(np.hstack((xv.flatten()[:,np.newaxis],yv.flatten()[:,np.newaxis])))
grid = np.zeros((101,101),dtype='bool')
grid[((xv.flatten()-first)/size).astype('int'),((yv.flatten()-first)/size).astype('int')] = flags

xi,yi = np.random.randint(-300,300,100)/100,np.random.randint(-300,300,100)/100
vflag = grid[((xi-first)/size).astype('int'),((yi-first)/size).astype('int')]
plt.imshow(grid.T,origin='lower',interpolation='nearest',cmap='binary')
plt.scatter(((xi-first)/size).astype('int'),((yi-first)/size).astype('int'),c=vflag,cmap='Greens',s=90)
plt.show()

, the results is this:

point inside polygon within pixel tolerance


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...