Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
813 views
in Technique[技术] by (71.8m points)

python - Efficient way to unnest (explode) multiple list columns in a pandas DataFrame

I am reading multiple JSON objects into one DataFrame. The problem is that some of the columns are lists. Also, the data is very big and because of that I cannot use the available solutions on the internet. They are very slow and memory-inefficient

Here is how my data looks like:

df = pd.DataFrame({'A': ['x1','x2','x3', 'x4'], 'B':[['v1','v2'],['v3','v4'],['v5','v6'],['v7','v8']], 'C':[['c1','c2'],['c3','c4'],['c5','c6'],['c7','c8']],'D':[['d1','d2'],['d3','d4'],['d5','d6'],['d7','d8']], 'E':[['e1','e2'],['e3','e4'],['e5','e6'],['e7','e8']]})
    A       B          C           D           E
0   x1  [v1, v2]    [c1, c2]    [d1, d2]    [e1, e2]
1   x2  [v3, v4]    [c3, c4]    [d3, d4]    [e3, e4]
2   x3  [v5, v6]    [c5, c6]    [d5, d6]    [e5, e6]
3   x4  [v7, v8]    [c7, c8]    [d7, d8]    [e7, e8]

And this is the shape of my data: (441079, 12)

My desired output is:

    A       B          C           D           E
0   x1      v1         c1         d1          e1
0   x1      v2         c2         d2          e2
1   x2      v3         c3         d3          e3
1   x2      v4         c4         d4          e4
.....

EDIT: After being marked as duplicate, I would like to stress on the fact that in this question I was looking for an efficient method of exploding multiple columns. Therefore the approved answer is able to explode an arbitrary number of columns on very large datasets efficiently. Something that the answers to the other question failed to do (and that was the reason I asked this question after testing those solutions).

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

pandas >= 0.25

Assuming all columns have the same number of lists, you can call Series.explode on each column.

df.set_index(['A']).apply(pd.Series.explode).reset_index()

    A   B   C   D   E
0  x1  v1  c1  d1  e1
1  x1  v2  c2  d2  e2
2  x2  v3  c3  d3  e3
3  x2  v4  c4  d4  e4
4  x3  v5  c5  d5  e5
5  x3  v6  c6  d6  e6
6  x4  v7  c7  d7  e7
7  x4  v8  c8  d8  e8

The idea is to set as the index all columns that must NOT be exploded first, then reset the index after.


It's also faster.

%timeit df.set_index(['A']).apply(pd.Series.explode).reset_index()
%%timeit
(df.set_index('A')
   .apply(lambda x: x.apply(pd.Series).stack())
   .reset_index()
   .drop('level_1', 1))


2.22 ms ± 98.6 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)
9.14 ms ± 329 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...