Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
136 views
in Technique[技术] by (71.8m points)

c# - How to find all partitions of a set

I have a set of distinct values. I am looking for a way to generate all partitions of this set, i.e. all possible ways of dividing the set into subsets.

For instance, the set {1, 2, 3} has the following partitions:

{ {1}, {2}, {3} },
{ {1, 2}, {3} },
{ {1, 3}, {2} },
{ {1}, {2, 3} },
{ {1, 2, 3} }.

As these are sets in the mathematical sense, order is irrelevant. For instance, {1, 2}, {3} is the same as {3}, {2, 1} and should not be a separate result.

A thorough definition of set partitions can be found on Wikipedia.

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I've found a straightforward recursive solution.

First, let's solve a simpler problem: how to find all partitions consisting of exactly two parts. For an n-element set, we can count an int from 0 to (2^n)-1. This creates every n-bit pattern, with each bit corresponding to one input element. If the bit is 0, we place the element in the first part; if it is 1, the element is placed in the second part. This leaves one problem: For each partition, we'll get a duplicate result where the two parts are swapped. To remedy this, we'll always place the first element into the first part. We then only distribute the remaining n-1 elements by counting from 0 to (2^(n-1))-1.

Now that we can partition a set into two parts, we can write a recursive function that solves the rest of the problem. The function starts off with the original set and finds all two-part-partitions. For each of these partitions, it recursively finds all ways to partition the second part into two parts, yielding all three-part partitions. It then divides the last part of each of these partitions to generate all four-part partitions, and so on.

The following is an implementation in C#. Calling

Partitioning.GetAllPartitions(new[] { 1, 2, 3, 4 })

yields

{ {1, 2, 3, 4} },
{ {1, 3, 4}, {2} },
{ {1, 2, 4}, {3} },
{ {1, 4}, {2, 3} },
{ {1, 4}, {2}, {3} },
{ {1, 2, 3}, {4} },
{ {1, 3}, {2, 4} },
{ {1, 3}, {2}, {4} },
{ {1, 2}, {3, 4} },
{ {1, 2}, {3}, {4} },
{ {1}, {2, 3, 4} },
{ {1}, {2, 4}, {3} },
{ {1}, {2, 3}, {4} },
{ {1}, {2}, {3, 4} },
{ {1}, {2}, {3}, {4} }.
using System;
using System.Collections.Generic;
using System.Linq;

namespace PartitionTest {
    public static class Partitioning {
        public static IEnumerable<T[][]> GetAllPartitions<T>(T[] elements) {
            return GetAllPartitions(new T[][]{}, elements);
        }

        private static IEnumerable<T[][]> GetAllPartitions<T>(
            T[][] fixedParts, T[] suffixElements)
        {
            // A trivial partition consists of the fixed parts
            // followed by all suffix elements as one block
            yield return fixedParts.Concat(new[] { suffixElements }).ToArray();

            // Get all two-group-partitions of the suffix elements
            // and sub-divide them recursively
            var suffixPartitions = GetTuplePartitions(suffixElements);
            foreach (Tuple<T[], T[]> suffixPartition in suffixPartitions) {
                var subPartitions = GetAllPartitions(
                    fixedParts.Concat(new[] { suffixPartition.Item1 }).ToArray(),
                    suffixPartition.Item2);
                foreach (var subPartition in subPartitions) {
                    yield return subPartition;
                }
            }
        }

        private static IEnumerable<Tuple<T[], T[]>> GetTuplePartitions<T>(
            T[] elements)
        {
            // No result if less than 2 elements
            if (elements.Length < 2) yield break;

            // Generate all 2-part partitions
            for (int pattern = 1; pattern < 1 << (elements.Length - 1); pattern++) {
                // Create the two result sets and
                // assign the first element to the first set
                List<T>[] resultSets = {
                    new List<T> { elements[0] }, new List<T>() };
                // Distribute the remaining elements
                for (int index = 1; index < elements.Length; index++) {
                    resultSets[(pattern >> (index - 1)) & 1].Add(elements[index]);
                }

                yield return Tuple.Create(
                    resultSets[0].ToArray(), resultSets[1].ToArray());
            }
        }
    }
}

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...