Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
91 views
in Technique[技术] by (71.8m points)

c++ - How to implement atoi using SIMD?

I'd like to try writing an atoi implementation using SIMD instructions, to be included in RapidJSON (a C++ JSON reader/writer library). It currently has some SSE2 and SSE4.2 optimizations in other places.

If it's a speed gain, multiple atoi results can be done in parallel. The strings are originally coming from a buffer of JSON data, so a multi-atoi function will have to do any required swizzling.

The algorithm I came up with is the following:

  1. I can initialize a vector of length N in the following fashion: [10^N..10^1]
  2. I convert each character in the buffer to an integer and place them in another vector.
  3. I take each number in the significant digits vector and multiply it by the matching number in the numbers vector and sum the results.

I'm targeting x86 and x86-64 architectures.

I know that AVX2 supports three operand Fused Multiply-Add so I'll be able to perform Sum = Number * Significant Digit + Sum.
That's where I got so far.
Is my algorithm correct? Is there a better way?
Is there a reference implementation for atoi using any SIMD instructions set?

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The algorithm and its implementation is finished now. It's complete and (moderately) tested (Updated for less constant memory usage and tolerating plus-char).

The properties of this code are as follows:

  • Works for int and uint, from MIN_INT=-2147483648 to MAX_INT=2147483647 and from MIN_UINT=0 to MAX_UINT=4294967295
  • A leading '-' char indicates a negative number (as sensible), a leading '+' char is ignored
  • Leading zeros (with or without sign char) are ignored
  • Overflow is ignored - bigger numbers just wraparound
  • Zero length strings result in value 0 = -0
  • Invalid characters are recognized and the conversion ends at the first invalid char
  • At least 16 bytes after the last leading zero must be accessible and possible security implications of reading after EOS are left to the caller
  • Only SSE4.2 is needed

About this implementation:

  • This code sample can be run with GNU Assembler(as) using .intel_syntax noprefix at the beginning
  • Data footprint for constants is 64 bytes (4*128 bit XMM) equalling one cache line.
  • Code footprint is 46 instructions with 51 micro-Ops and 64 cycles latency
  • One loop for removal of leading zeros, otherwise no jumps except for error handling, so...
  • Time complexity is O(1)

The approach of the algorithm:

- Pointer to number string is expected in ESI
- Check if first char is '-', then indicate if negative number in EDX (**A**)
- Check for leading zeros and EOS (**B**)
- Check string for valid digits and get strlen() of valid chars (**C**)
- Reverse string so that power of 
  10^0 is always at BYTE 15
  10^1 is always at BYTE 14
  10^2 is always at BYTE 13
  10^3 is always at BYTE 12
  10^4 is always at BYTE 11 
  ... 
  and mask out all following chars (**D**)
- Subtract saturated '0' from each of the 16 possible chars (**1**)
- Take 16 consecutive byte-values and and split them to WORDs 
  in two XMM-registers (**2**)
  P O N M L K J I  | H G F E D C B A ->
    H   G   F   E  |   D   C   B   A (XMM0)
    P   O   N   M  |   L   K   J   I (XMM1)
- Multiply each WORD by its place-value modulo 10000 (1,10,100,1000)
  (factors smaller then MAX_WORD, 4 factors per QWORD/halfXMM)
  (**2**) so we can horizontally combine twice before another multiply.
  The PMADDWD instruction can do this and the next step:
- Horizontally add adjacent WORDs to DWORDs (**3**)
  H*1000+G*100  F*10+E*1  |  D*1000+C*100  B*10+A*1 (XMM0)
  P*1000+O*100  N*10+M*1  |  L*1000+K*100  J*10+I*1 (XMM1)
- Horizontally add adjacent DWORDs from XMM0 and XMM1 to XMM0 (**4**)
  xmmDst[31-0]   = xmm0[63-32]  + xmm0[31-0]
  xmmDst[63-32]  = xmm0[127-96] + xmm0[95-64]
  xmmDst[95-64]  = xmm1[63-32]  + xmm1[31-0]
  xmmDst[127-96] = xmm1[127-96] + xmm1[95-64]
- Values in XMM0 are multiplied with the factors (**5**)
  P*1000+O*100+N*10+M*1 (DWORD factor 1000000000000 = too big for DWORD, but possibly useful for QWORD number strings)
  L*1000+K*100+J*10+I*1 (DWORD factor 100000000)
  H*1000+G*100+F*10+E*1 (DWORD factor 10000)
  D*1000+C*100+B*10+A*1 (DWORD factor 1)
- The last step is adding these four DWORDs together with 2*PHADDD emulated by 2*(PSHUFD+PADDD)
  - xmm0[31-0]  = xmm0[63-32]  + xmm0[31-0]   (**6**)
    xmm0[63-32] = xmm0[127-96] + xmm0[95-64]
      (the upper QWORD contains the same and is ignored)
  - xmm0[31-0]  = xmm0[63-32]  + xmm0[31-0]   (**7**)
- If the number is negative (indicated in EDX by 000...0=pos or 111...1=neg), negate it(**8**)

And the sample implementation in GNU Assembler with intel syntax:

.intel_syntax noprefix
.data
  .align 64
    ddqDigitRange: .byte  '0','9',0,0,0,0,0,0,0,0,0,0,0,0,0,0
    ddqShuffleMask:.byte  15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 
    ddqFactor1:    .word  1,10,100,1000, 1,10,100,1000  
    ddqFactor2:    .long  1,10000,100000000,0
.text    
_start:
   mov   esi, lpInputNumberString
   /* (**A**) indicate negative number in EDX */
   mov   eax, -1
   xor   ecx, ecx
   xor   edx, edx
   mov   bl,  byte ptr [esi]
   cmp   bl,  '-'
   cmove edx, eax
   cmp   bl,  '+'
   cmove ecx, eax
   sub   esi, edx
   sub   esi, ecx
   /* (**B**)remove leading zeros */
   xor   eax,eax               /* return value ZERO */
  remove_leading_zeros:
   inc   esi
   cmp   byte ptr [esi-1], '0'  /* skip leading zeros */
  je remove_leading_zeros
   cmp   byte ptr [esi-1], 0    /* catch empty string/number */
  je FINISH
   dec   esi
   /* check for valid digit-chars and invert from front to back */
   pxor      xmm2, xmm2         
   movdqa    xmm0, xmmword ptr [ddqDigitRange]
   movdqu    xmm1, xmmword ptr [esi]
   pcmpistri xmm0, xmm1, 0b00010100 /* (**C**) iim8=Unsigned bytes, Ranges, Negative Polarity(-), returns strlen() in ECX */
  jo FINISH             /* if first char is invalid return 0 - prevent processing empty string - 0 is still in EAX */
   mov al , '0'         /* value to subtract from chars */
   sub ecx, 16          /* len-16=negative to zero for shuffle mask */
   movd      xmm0, ecx
   pshufb    xmm0, xmm2 /* broadcast CL to all 16 BYTEs */
   paddb     xmm0, xmmword ptr [ddqShuffleMask] /* Generate permute mask for PSHUFB - all bytes < 0 have highest bit set means place gets zeroed */
   pshufb    xmm1, xmm0 /* (**D**) permute - now from highest to lowest BYTE are factors 10^0, 10^1, 10^2, ... */
   movd      xmm0, eax                         /* AL='0' from above */
   pshufb    xmm0, xmm2                        /* broadcast AL to XMM0 */
   psubusb   xmm1, xmm0                        /* (**1**) */
   movdqa    xmm0, xmm1
   punpcklbw xmm0, xmm2                        /* (**2**) */
   punpckhbw xmm1, xmm2
   pmaddwd   xmm0, xmmword ptr [ddqFactor1]    /* (**3**) */
   pmaddwd   xmm1, xmmword ptr [ddqFactor1]
   phaddd    xmm0, xmm1                        /* (**4**) */
   pmulld    xmm0, xmmword ptr [ddqFactor2]    /* (**5**) */
   pshufd    xmm1, xmm0, 0b11101110            /* (**6**) */
   paddd     xmm0, xmm1
   pshufd    xmm1, xmm0, 0b01010101            /* (**7**) */
   paddd     xmm0, xmm1
   movd      eax, xmm0
   /* negate if negative number */              
   add       eax, edx                          /* (**8**) */
   xor       eax, edx
  FINISH:
   /* EAX is return (u)int value */

The result of Intel-IACA Throughput Analysis for Haswell 32-bit:

Throughput Analysis Report
--------------------------
Block Throughput: 16.10 Cycles       Throughput Bottleneck: InterIteration

Port Binding In Cycles Per Iteration:
---------------------------------------------------------------------------------------
|  Port  |  0   -  DV  |  1   |  2   -  D   |  3   -  D   |  4   |  5   |  6   |  7   |
---------------------------------------------------------------------------------------
| Cycles | 9.5    0.0  | 10.0 | 4.5    4.5  | 4.5    4.5  | 0.0  | 11.1 | 11.4 | 0.0  |
---------------------------------------------------------------------------------------

N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)
D - Data fetch pipe (on ports 2 and 3), CP - on a critical path
F - Macro Fusion with the previous instruction occurred
* - instruction micro-ops not bound to a port
^ - Micro Fusion happened
# - ESP Tracking sync uop was issued
@ - SSE instruction followed an AVX256 instruction, dozens of cycles penalty is expected
! - instruction not supported, was not accounted in Analysis

| Num Of |                    Ports pressure in cycles                     |    |
|  Uops  |  0  - DV  |  1  |  2  -  D  |  3  -  D  |  4  |  5  |  6  |  7  |    |
---------------------------------------------------------------------------------
|   0*   |           |     |           |           |     |     |     |     |    | xor eax, eax
|   0*   |           |     |           |           |     |     |     |     |    | xor ecx, ecx
|   0*   |           |     |           |           |     |     |     |     |    | xor edx, edx
|   1    |           | 0.1 |           |           |     |     | 0.9 |     |    | dec eax
|   1    |           |     | 0.5   0.5 | 0.5   0.5 |     |     |     |     | CP | mov bl, byte ptr [esi]
|   1    |           |     |           |           |     |     | 1.0 |     | CP | cmp bl, 0x2d
|   2    | 0.1       | 0.2 |           |           |     |     | 1.8 |     | CP | cmovz edx, eax
|   1    | 0.1       | 0.5 |           |           |     |     | 0.4 |     | CP | cmp bl, 0x2b
|   2    | 0.5       | 0.2 |           |           |     |     | 1.2 |     | CP | cmovz ecx, eax
|   1    | 0.2       | 0.5 |           |           |     |     | 0.2 |     | CP | sub esi, edx
|   1    | 0.2       | 0.5 |           |           |     |     | 0.3 |     | CP | sub esi, ecx
|   0*   |           |     |           |           |     |     |     |     |    | xor eax, eax
|   1    | 0.3       | 0.1 |           |           |     |     | 0.6 |     | CP | inc esi
|   2^   | 0.3       |     | 0.5   0.5 | 0.5   0.5 |     |     | 0.6 |     |    | cmp byte ptr [esi-0x1], 0x30
|   0F   |           |     |           |           |     |     |     |     |    | jz 0xfffffffb
|   2^   | 0.6       |     | 0.5   0.5 | 0.5   0.5 |     |     | 0.4 |     |    | cmp byte ptr [esi-0x1], 0x0
|   0F   |           |     |           |           |     |     |     |     |    | jz 0x8b
|   1    | 0.1       | 0.9 |           |           |     |     |     |     | CP | dec esi
|   1    |           |     | 0.5   0.5 | 0.5   0.5 |     |     |     |     |    | movdqa xmm0, xmmword ptr [0x80492f0]
|   1    |           |     | 0.5   0.5 | 0.5   0.5 |     |     |     |     | CP | movdqu xmm1, xmmword ptr [esi]
|   0*   |           |     |           |           |     |     |     |     |    | pxor xmm2, xmm2
|   3    | 2.0       | 1.0 |           |           |     |     |     |     | CP | pcmpistri xmm0, xmm1, 0x14
|   1    |           |     |           |           |     |     | 1.0 |     |    | jo 0x6e
|   1    |           | 0.4 |           |           |     | 0.1 | 0.5 |     |    | mov al, 0x30
|   1    | 0.1       | 0.5 |           |           |     | 0.1 | 0.3 |     | CP | sub ecx, 0x10
|   1    |           |     |           |           |     | 1.0 |     |     | CP | movd xmm0, ecx
|   1    |           |     |           |           |     | 1.0 |     |     | CP | pshufb xmm0, xmm2
|   2^   |           | 1.0 | 0.5   0.5 | 0.5   0.5 |     |     |     |     | CP | paddb xmm0, xmmword ptr [0x80492c0]
|   1    |           |     |           |           |     | 1.0 |     |     | CP | pshufb xmm1, xmm0
|   1    |           |     |           |           |     | 1.0 |     |     |    | movd xmm0, eax
|   1    |           |     |           |           |     | 1.0 |     |     |    | pshufb xmm0, xmm2
|   1    |           | 1.0 |           |           |     |     |     |     | CP | psubusb xmm1, xmm0
|   0*   |           |     |           |           |     |     |     |     | CP | movdqa xmm0, xmm1
|   1    |           |     |           |           |     | 1.0 |     |     | CP | punpcklbw xmm0, xmm2
|   1    |           |     |           |           |     | 1.0 |     |     |    | punpckhbw xmm1, xmm2
|   2^   | 1.0       |     | 0.5   0.5 | 0.5   0.5 |     |     |     |     | CP | pmaddwd xmm0, xmmword ptr [0x80492d0]
|   2^   | 1.0       |     | 0.5   0.5 | 0.5   0.5 |     |     |     |     |    | pmaddwd xmm1, xmmword ptr [0x80492d0]
|   3    |           | 1.0 |           |           |     |

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...