Considering the example code.
I would like to know How to apply gradient clipping on this network on the RNN where there is a possibility of exploding gradients.
tf.clip_by_value(t, clip_value_min, clip_value_max, name=None)
This is an example that could be used but where do I introduce this ?
In the def of RNN
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(0, n_steps, _X) # n_steps
tf.clip_by_value(_X, -1, 1, name=None)
But this doesn't make sense as the tensor _X is the input and not the grad what is to be clipped?
Do I have to define my own Optimizer for this or is there a simpler option?
Question&Answers:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…