Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
305 views
in Technique[技术] by (71.8m points)

python - How to apply gradient clipping in TensorFlow?

Considering the example code.

I would like to know How to apply gradient clipping on this network on the RNN where there is a possibility of exploding gradients.

tf.clip_by_value(t, clip_value_min, clip_value_max, name=None)

This is an example that could be used but where do I introduce this ? In the def of RNN

    lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
    # Split data because rnn cell needs a list of inputs for the RNN inner loop
    _X = tf.split(0, n_steps, _X) # n_steps
tf.clip_by_value(_X, -1, 1, name=None)

But this doesn't make sense as the tensor _X is the input and not the grad what is to be clipped?

Do I have to define my own Optimizer for this or is there a simpler option?

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Gradient clipping needs to happen after computing the gradients, but before applying them to update the model's parameters. In your example, both of those things are handled by the AdamOptimizer.minimize() method.

In order to clip your gradients you'll need to explicitly compute, clip, and apply them as described in this section in TensorFlow's API documentation. Specifically you'll need to substitute the call to the minimize() method with something like the following:

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
gvs = optimizer.compute_gradients(cost)
capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gvs]
train_op = optimizer.apply_gradients(capped_gvs)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...