While your functions certainly look interesting, I believe you are asking if there are other ways to go about it.
Personally, I like to use something like this:
## SAMPLE DATA
DT1 <- data.table(id=sample(LETTERS[1:4], 20, TRUE), Col1=1:20, Col2=rnorm(20))
DT2 <- data.table(id=sample(LETTERS[3:8], 20, TRUE), Col1=sample(100:500, 20), Col2=rnorm(20))
DT3 <- data.table(id=sample(LETTERS[19:20], 20, TRUE), Col1=sample(100:500, 20), Col2=rnorm(20))
ACCESSING A TABLE BY REFERENCE TO THE TABLE NAME:
This is straightforward, much like any object in R
# use strings to select the table
tablesSelected <- "DT3"
# use get to access them
get(tablesSelected)
# and we can perform operations:
get(tablesSelected)[, list(C1mean=mean(Col1), C2mean=mean(Col2))]
SELECTING COLUMNS BY REFERENCE
To select columns by reference to their names, use the .SDcols
argument.
Given a vector of column names:
columnsSelected <- c("Col1", "Col2")
Assign that vector to the .SDcols argument:
## Here we are simply accessing those columns
DT3[, .SD, .SDcols = columnsSelected]
We can also apply a function to each column named in the string vector:
## apply a function to each column
DT3[, lapply(.SD, mean), .SDcols = columnsSelected]
Note that if our goal is simply to output the columns we can turn off with
:
# This works for displaying
DT3[, columnsSelected, with=FALSE]
Note: a more "modern" way of doing this is to use the ..
shortcut to access columnsSelected
from "up one level":
DT3[ , ..columnsSelected]
However, if using with=FALSE
, we cannot then operate directly on the columns in the usual fashion
## This does NOT work:
DT3[, someFunc(columnsSelected), with=FALSE]
## This DOES work:
DT3[, someFunc(.SD), .SDcols=columnsSelected]
## This also works, but is less ideal, ie assigning to new columns is more cumbersome
DT3[, columnsSelected, with=FALSE][, someFunc(.SD)]
We can also use get
, but it is a bit trickier.
I am leaving it here for reference, but .SDcols
is the way to go
## we need to use `get`, but inside `j`
## AND IN A WRAPPER FUNCTION <~~~~~ THIS IS VITAL
DT3[, lapply(columnsSelected, function(.col) get(.col))]
## We can execute functions on the columns:
DT3[, lapply(columnsSelected, function(.col) mean( get(.col) ))]
## And of course, we can use more involved-functions, much like any *ply call:
# using .SDcols
DT3[, lapply(.SD, function(.col) c(mean(.col) + 2*sd(.col), mean(.col) - 2*sd(.col))), .SDcols = columnsSelected]
# using `get` and assigning the value to a var.
# Note that this method has memory drawbacks, so using .SDcols is preferred
DT3[, lapply(columnsSelected, function(.col) {TheCol <- get(.col); c(mean(TheCol) + 2*sd(TheCol), mean(TheCol) - 2*sd(TheCol))})]
For reference, if you try the following, you will notice that they do not produce the results we are after.
## this DOES NOT work (need ..columnsSelected)
DT3[, columnsSelected]
## netiher does this
DT3[, eval(columnsSelected)]
## still does not work:
DT3[, lapply(columnsSelected, get)]
If you want to change the name of the columns:
# Using the `.SDcols` method: change names using `setnames` (lowercase "n")
DT3[, setnames(.SD, c("new.Name1", "new.Name2")), .SDcols =columnsSelected]
# Using the `get` method:
## The names of the new columns will be the names of the `columnsSelected` vector
## Thus, if we want to preserve the names, use the following:
names(columnsSelected) <- columnsSelected
DT3[, lapply(columnsSelected, function(.col) get(.col))]
## we can also use this trick to give the columns new names
names(columnsSelected) <- c("new.Name1", "new.Name2")
DT3[, lapply(columnsSelected, function(.col) get(.col))]
Clearly, using .SDcols is easier and more elegant.
What about by
?
# `by` is straight forward, you can use a vector of strings in the `by` argument.
# lets add another column to show how to use two columns in `by`
DT3[, secondID := sample(letters[1:2], 20, TRUE)]
# here is our string vector:
byCols <- c("id", "secondID")
# and here is our call
DT3[, lapply(columnsSelected, function(.col) mean(get(.col))), by=byCols]
PUTTING IT ALL TOGETHER
We can access the data.table by reference to its name and then select its columns also by name:
get(tablesSelected)[, .SD, .SDcols=columnsSelected]
## OR WITH MULTIPLE TABLES
tablesSelected <- c("DT1", "DT3")
lapply(tablesSelected, function(.T) get(.T)[, .SD, .SDcols=columnsSelected])
# we may want to name the vector for neatness, since
# the resulting list inherits the names.
names(tablesSelected) <- tablesSelected
THIS IS THE BEST PART:
Since so much in data.table
is pass-by-reference, it is easy to have a list of tables, a separate list of columns to add and yet another list of columns to operate on, and put all together to add perform similar operations -- but with different inputs -- on all your tables.
As opposed to doing something similar with data.frame
, there is no need to reassign the end result.
newColumnsToAdd <- c("UpperBound", "LowerBound")
FunctionToExecute <- function(vec) c(mean(vec) - 2*sd(vec), mean(vec) + 2*sd(vec))
# note the list of column names per table!
columnsUsingPerTable <- list("DT1" = "Col1", DT2 = "Col2", DT3 = "Col1")
tablesSelected <- names(columnsUsingPerTable)
byCols <- c("id")
# TADA:
dummyVar <- # I use `dummyVar` because I do not want to display the output
lapply(tablesSelected, function(.T)
get(.T)[, c(newColumnsToAdd) := lapply(.SD, FunctionToExecute), .SDcols=columnsUsingPerTable[[.T]], by=byCols ] )
# Take a look at the tables now:
DT1
DT2
DT3