Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
572 views
in Technique[技术] by (71.8m points)

python - Intuition and idea behind reshaping 4D array to 2D array in NumPy

While implementing a Kronecker-product for pedagogical reasons (without using the obvious and readily available np.kron()), I obtained a 4 dimensional array as an intermediate result, which I've to reshape to get the final result.

But, I still can't wrap my head around reshaping these high dimensional arrays. I have this 4D array:

array([[[[ 0,  0],
         [ 0,  0]],

        [[ 5, 10],
         [15, 20]]],


       [[[ 6, 12],
         [18, 24]],

        [[ 7, 14],
         [21, 28]]]])

This is of shape (2, 2, 2, 2) and I'd like to reshape it to (4,4). One might think that this is obvious to do with

np.reshape(my4darr, (4,4))

But, the above reshape does not give me the expected result which is:

array([[ 0,  5,  0, 10],
       [ 6,  7, 12, 14],
       [ 0, 15,  0, 20],
       [18, 21, 24, 28]])

As you can see, all the elements in the expected result are present in the 4D array. I just can't get the hang of doing the reshape correctly as needed. In addition to the answer, some explanation of how to do the reshape for such high dimensional arrays would be really helpful. Thanks!

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

General idea for nd to nd transformation

The idea with such nd to nd transformation is using just two things -

Permute axes : To get the order such that the flattened version corresponds to the flattened version of output. So, if you somehow end up using it twice, look again because you shouldn't.

Reshape : To split the axes or bring the final output to the desired shape. Splitting axes is needed mostly at the start, when the input is of lower-dim and we are needed to split into blocks. Again, you shouldn't need this more than twice.

Hence, generally we would have three steps :

    [ Reshape ]      --->  [ Permute axes ]   --->  [ Reshape ]

 Create more axes             Bring axes             Merge axes
                          into correct order

Back-tracking method

The safest way to solve, given the input and output is through, what one could call as the back-tracking method, i.e. split the axes of the input (when going from smaller nd to bigger nd) or split the axes of the output (when going from bigger nd to smaller nd). The idea with the splitting is to bring the number of dims of the smaller nd one same as the bigger nd one. Then, study the strides of the output and match it up against the input to get the required permute order. Finally, a reshape (default way or C order) might be needed at the end, if the final one is a smaller nd one, to merge axes.

If both input and output are of same number of dims, then we would need to split both and break into blocks and study their strides against each other. In such cases, we should have the additional input parameter of block sizes, but that's probably off-topic.

Example

Let's use this specific case to demonstrate how to apply those strategies. In here, the input is 4D, while output is 2D. So, most probably, we won't need reshape to split. So, we need to start with permuting axes. Since, the final output is not 4D, but a 2D one, we would need a reshape at the end.

Now, the input here is :

In [270]: a
Out[270]: 
array([[[[ 0,  0],
         [ 0,  0]],

        [[ 5, 10],
         [15, 20]]],


       [[[ 6, 12],
         [18, 24]],

        [[ 7, 14],
         [21, 28]]]])

The expected output is :

In [271]: out
    Out[271]: 
    array([[ 0,  5,  0, 10],
           [ 6,  7, 12, 14],
           [ 0, 15,  0, 20],
           [18, 21, 24, 28]])

Also, this is a bigger nd to smaller nd transformation, so the back-tracking method would involve, splitting the output and studying its strides and matching up against the corresponding values in input :

                    axis = 3
                   ---      -->          
                                        
                    axis = 1                    
                   ------>           
axis=2|  axis=0|   [ 0,  5,  0, 10],        

               |   [ 6,  7, 12, 14],
               v  
      |            [ 0, 15,  0, 20],
      v
                   [18, 21, 24, 28]])

Hence, the permuted order needed is (2,0,3,1) :

In [275]: a.transpose((2, 0, 3, 1))
Out[275]: 
array([[[[ 0,  5],
         [ 0, 10]],

        [[ 6,  7],
         [12, 14]]],


       [[[ 0, 15],
         [ 0, 20]],

        [[18, 21],
         [24, 28]]]])

Then, simply reshape to the expected shape :

In [276]: a.transpose((2, 0, 3, 1)).reshape(4,4)
Out[276]: 
array([[ 0,  5,  0, 10],
       [ 6,  7, 12, 14],
       [ 0, 15,  0, 20],
       [18, 21, 24, 28]])

More examples

I dug up my history and found few Q&As based on nd to nd transformations. These could serve as other example cases, albeit with lesser explanation (mostly). As mentioned earlier, at most two reshapes and at most one swapaxes/transpose did the job everywhere. They are listed below :


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...