I need to maximize the objective function for some problems using R package 'nloptr'. I tried the basic rule "Maximize f(x) <=> Minimize -f(x)" but it does not work. I am not sure what's wrong either using it or there is some other way.
Here is a complete example. The current solution is just the initial vector with minimum objective value. But, I am supposed to get the solution that would maximize the objective function. Can someone please help me how to get it. Thanks!
library(nloptr)
X = log(rbind(c(1.350, 8.100),
c(465.000, 423.000),
c(36.330 , 119.500),
c(27.660 , 115.000),
c(1.040 , 5.500),
c(11700.000, 50.000),
c(2547.000 , 4603.000),
c(187.100 , 419.000),
c(521.000 , 655.000),
c(10.000 , 115.000),
c(3.300 , 25.600),
c(529.000 , 680.000),
c(207.000 , 406.000),
c(62.000 , 1320.000),
c(6654.000 , 5712.000),
c(9400.000 , 70.000),
c(6.800 , 179.000),
c(35.000 , 56.000),
c(0.120 , 1.000),
c(0.023 , 0.400),
c(2.500 , 12.100),
c(55.500 , 175.000),
c(100.000 , 157.000),
c(52.160 , 440.000),
c(87000.000 , 154.500),
c(0.280 , 1.900),
c(0.122 , 3.000),
c(192.000 , 180.000)))
n = nrow(X)
q = 0.5
x0 = cbind(8,4)
x01 = x0[1]
x02 = x0[2]
x1 = X[,1]
x2 = X[,2]
pInit = c(0.1614860, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
0.0000000, 0.0000000, 0.0000000, 0.7124934, 0.0000000, 0.0000000,
0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
0.1260206, 0.0000000, 0.0000000, 0.0000000)
eval_f0 = function(p) {
obj0 = mean((n * p ) ^ q)
grad0 = rbind(q * ((n * p) ^ (q - 1))/((mean((n * p ) ^ q))^2))
return(list("objective" = obj0, "gradient" = grad0))
}
eval_g_eq0 = function(p) {
sum0 = sum(x1 * p) - x01
sum1 = sum(x2 * p) - x02
sum2 = sum(p) - 1
constr0 = rbind(sum0, sum1, sum2)
grad0 = rbind(x1, x2, rep(1,n))
return(list("constraints" = constr0, "jacobian" = grad0))
}
local_opts <- list( "algorithm" = "NLOPT_LD_AUGLAG",
"xtol_rel" = 1.0e-7 )
opts <- list( "algorithm" = "NLOPT_LD_AUGLAG",
"xtol_rel" = 1.0e-7,
"maxeval" = 10000,
"local_opts" = local_opts )
res1 = nloptr(x0 = c(pInit),
eval_f = eval_f0,
lb = c(rep(0, n)),
ub = c(rep(Inf, n)),
eval_g_eq = eval_g_eq0,
opts = opts )
weight = res1$solution
fval0 = res1$objective
print(list(fval0, weight))
See Question&Answers more detail:
os