Let me complement Yves answer pointing out to a general "view" pattern that works well in many situations were case analysis is needed. I will use the built-in support in math-comp but the technique is not specific to it.
Let's assume your initial goal:
From mathcomp Require Import all_ssreflect.
Variables (T : eqType) (a b : T).
Lemma u : (if a == b then 0 else 1) = 2.
Proof.
now, you could use case_eq
+ simpl
to arrive to next step; however, you can also match using more specialized "view" lemmas. For example, you could use ifP
:
ifP : forall (A : Type) (b : bool) (vT vF : A),
if_spec b vT vF (b = false) b (if b then vT else vF)
where if_spec
is:
Inductive if_spec (A : Type) (b : bool) (vT vF : A) (not_b : Prop) : bool -> A -> Set :=
IfSpecTrue : b -> if_spec b vT vF not_b true vT
| IfSpecFalse : not_b -> if_spec b vT vF not_b false vF
That looks a bit confusing, the important bit is the parameters to the type family bool -> A -> Set
. The first exercise is "prove the ifP
lemma!".
Indeed, if we use ifP
in our proof, we get:
case: ifP.
Goal 1: (a == b) = true -> 0 = 2
Goal 2: (a == b) = false -> 1 = 2
Note that we didn't have to specify anything! Indeed, lemmas of the form { A
} + { B }
are just special cases of this view pattern. This trick works in many other situations, for example, you can also use eqP
, which has a spec relating the boolean equality with the propositional one. If you do:
case: eqP.
you'll get:
Goal 1: a = b -> 0 = 2
Goal 2: a <> b -> 1 = 2
which is very convenient. In fact, eqP
is basically a generic version of the type_dec
principle.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…