p1 + p2 + ... + pn = 1
p1 = p2 * x
p2 = p3 * x
...
p_n-1 = pn * x
Solving this gives you:
p1 + p2 + ... + pn = 1
(p2 * x) + (p3 * x) + ... + (pn * x) + pn = 1
((p3*x) * x) + ((p4*x) * x) + ... + ((p_n-1*x) * x) + pn = 1
....
pn* (x^(n-1) + x^(n-2) + ... +x^1 + x^0) = 1
pn*(1-x^n)/(1-x) = 1
pn = (1-x)/(1-x^n)
This gives you the probability you need to set to pn
, and from it you can calculate the probabilities for all other p1,p2,...p_n-1
Now, you can use a "black box" RNG that chooses a number with a distribution, like those in the threads you mentioned.
A simple approach to do it is to set an auxillary array:
aux[i] = p1 + p2 + ... + pi
Now, draw a random number with uniform distribution between 0
to aux[n]
, and using binary search (aux array is sorted), get the first value, which matching value in aux
is greater than the random uniform number you got
Original answer, for substraction (before question was editted):
For n
items, you need to solve the equation:
p1 + p2 + ... + pn = 1
p1 = p2 + x
p2 = p3 + x
...
p_n-1 = pn + x
Solving this gives you:
p1 + p2 + ... + pn = 1
(p2 + x) + (p3 + x) + ... + (pn + x) + pn = 1
((p3+x) + x) + ((p4+x) + x) + ... + ((p_n-1+x) + x) + pn = 1
....
pn* ((n-1)x + (n-2)x + ... +x + 0) = 1
pn* x = n(n-1)/2
pn = n(n-1)/(2x)
This gives you the probability you need to set to pn
, and from it you can calculate the probabilities for all other p1,p2,...p_n-1
Now, you can use a "black box" RNG that chooses a number with a distribution, like those in the threads you mentioned.
Be advised, this is not guaranteed you will have a solution such that 0<p_i<1
for all i
, but you cannot guarantee one given from your requirements, and it is going to depend on values of n
and x
to fit.