Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
151 views
in Technique[技术] by (71.8m points)

Change column value in a dataframe spark scala

This is how my dataframe looks like at the moment

+------------+
|    DATE    |
+------------+
|    19931001|
|    19930404|
|    19930603|
|    19930805|
+------------+

I am trying to reformat this string value to yyyy-mm-dd hh:mm:ss.fff and keep it as a string not a date type or time stamp.

How would I do that using the withColumn method ?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Here is the solution using UDF and withcolumn, I have assumed that you have a string date field in Dataframe

//Create dfList dataframe
  val dfList = spark.sparkContext
    .parallelize(Seq("19931001","19930404", "19930603", "19930805")).toDF("DATE")


  dfList.withColumn("DATE", dateToTimeStamp($"DATE")).show()

  val dateToTimeStamp = udf((date: String) => {
    val stringDate = date.substring(0,4)+"/"+date.substring(4,6)+"/"+date.substring(6,8)
    val format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
    format.format(new SimpleDateFormat("yyy/MM/dd").parse(stringDate))
  })

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...