Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
199 views
in Technique[技术] by (71.8m points)

scala - Spark Compare two dataframes and find the match count

I have two spark sql dataframs both are not having any unique column. First dataframe contains n-grams, second one contains long text string (blog post). I want to find the matches on df2 and add count in df1.

DF1
------------
words
------------
Stack
Stack Overflow
users
spark scala

DF2

--------
POSTS
--------
Hello, Stack overflow users , Do you know spark scala
Spark scala is very fast
Users in stack are good in spark, users


Expected output

  ------------     ---------------
    words            match_count
  ------------    ---------------

    Stack               2           
    Stack Overflow      1
    users               3
    spark scala         1
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Brute force approach as follows in Scala not working over lines and treating all as lowercase, could all be added but that is for another day. Relies on not trying to examine strings but to define ngrams as that is what it is is, ngrams against ngrams and genning these and then JOINing and counting, whereby inner join only relevant. Some extra data added to prove the matching.

import org.apache.spark.ml.feature._
import org.apache.spark.ml.Pipeline
import org.apache.spark.sql.functions._  
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.{StructField,StructType,IntegerType,ArrayType,LongType,StringType}
import spark.implicits._

// Sample data, duplicates and items to check it works.
val dfPostsInit = Seq(
                  ( "Hello!!, Stack overflow users, Do you know spark scala users."),
                  ( "Spark scala is very fast,"),
                  ( "Users in stack are good in spark"),
                  ( "Users in stack are good in spark"),
                  ( "xy z"),
                  ( "x yz"),
                  ( "ABC"),
                  ( "abc"),
                  ( "XYZ,!!YYY@#$ Hello Bob..."))
                 .toDF("posting")

val dfWordsInit = Seq(("Stack"), ("Stack Overflow"),("users"), ("spark scala"), ("xyz"), ("xy"), ("not found"), ("abc")).toDF("words")
val dfWords     = dfWordsInit.withColumn("words_perm" ,regexp_replace(dfWordsInit("words"), " ", "^")).withColumn("lower_words_perm" ,lower(regexp_replace(dfWordsInit("words"), " ", "^")))

val dfPostsTemp = dfPostsInit.map(r => (r.getString(0), r.getString(0).split("\W+").toArray )) 
// Tidy Up
val columnsRenamed = Seq("posting", "posting_array") 
val dfPosts = dfPostsTemp.toDF(columnsRenamed: _*)

// Generate Ngrams up to some limit N - needs to be set. This so that we can count properly via a JOIN direct comparison. Can parametrize this in calls below.
// Not easy to find string matching over Array and no other answer presented.
def buildNgrams(inputCol: String = "posting_array", n: Int = 3) = {
  val ngrams = (1 to n).map(i =>
      new NGram().setN(i)
        .setInputCol(inputCol).setOutputCol(s"${i}_grams")
  )
  new Pipeline().setStages((ngrams).toArray)
}

val suffix:String = "_grams"
var i_grams_Cols:List[String] = Nil
for(i <- 1 to 3) {
   val iGCS = i.toString.concat(suffix)
   i_grams_Cols = i_grams_Cols ::: List(iGCS)
}     
// Generate data for checking against later from via rows only and thus not via columns, positional dependency counts, hence permutations. 
val dfPostsNGrams = buildNgrams().fit(dfPosts).transform(dfPosts)

val dummySchema = StructType(
    StructField("phrase", StringType, true) :: Nil)
var dfPostsNGrams2 = spark.createDataFrame(sc.emptyRDD[Row], dummySchema)
for (i <- i_grams_Cols) {
  val nameCol = col({i})
  dfPostsNGrams2 = dfPostsNGrams2.union (dfPostsNGrams.select(explode({nameCol}).as("phrase")).toDF )
 }

val dfPostsNGrams3     = dfPostsNGrams2.withColumn("lower_phrase_concatenated",lower(regexp_replace(dfPostsNGrams2("phrase"), " ", "^"))) 

val result = dfPostsNGrams3.join(dfWords, col("lower_phrase_concatenated") === 
col("lower_words_perm"), "inner")  
              .groupBy("words_perm", "words")
              .agg(count("*").as("match_count"))

result.select("words", "match_count").show(false)

returns:

+--------------+-----------+
|words         |match_count|
+--------------+-----------+
|spark scala   |2          |
|users         |4          |
|abc           |2          |
|Stack Overflow|1          |
|xy            |1          |
|Stack         |3          |
|xyz           |1          |
+--------------+-----------+

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...