I think my entire training data is being stored inside the graph which is hitting the 2gb limit. How can i use feed_dict in estimator API? FYI, I am using the tensorflow estimator API down the line for training my model.
Traceback (most recent call last): File
"/tmp/apprunner/.working/runtime/app/ae_python_tf.py", line 259, in
AE_Regressor.train(lambda: input_fn(X_train,epochs,batch_size), hooks=[time_hist, logging_hook]) File
"/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py",
line 354, in train
loss = self._train_model(input_fn, hooks, saving_listeners) File "/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py",
line 1205, in _train_model
return self._train_model_distributed(input_fn, hooks, saving_listeners) File
"/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py",
line 1352, in _train_model_distributed
saving_listeners) File "/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py",
line 1468, in _train_with_estimator_spec
log_step_count_steps=log_step_count_steps) as mon_sess: File "/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py",
line 504, in MonitoredTrainingSession
stop_grace_period_secs=stop_grace_period_secs) File "/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py",
line 921, in init
stop_grace_period_secs=stop_grace_period_secs) File "/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py",
line 631, in init
h.begin() File "/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/training/basic_session_run_hooks.py",
line 543, in begin
self._summary_writer = SummaryWriterCache.get(self._checkpoint_dir) File
"/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/summary/writer/writer_cache.py",
line 63, in get
logdir, graph=ops.get_default_graph()) File "/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/summary/writer/writer.py",
line 367, in init
super(FileWriter, self).init(event_writer, graph, graph_def) File
"/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/summary/writer/writer.py",
line 83, in init
self.add_graph(graph=graph, graph_def=graph_def) File "/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/summary/writer/writer.py",
line 193, in add_graph
true_graph_def = graph.as_graph_def(add_shapes=True) File "/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/framework/ops.py",
line 3124, in as_graph_def
result, _ = self._as_graph_def(from_version, add_shapes) File "/tmp/apprunner/.working/runtime/env/lib/python3.5/site-packages/tensorflow/python/framework/ops.py",
line 3082, in _as_graph_def
c_api.TF_GraphToGraphDef(self._c_graph, buf) tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot
serialize protocol buffer of type tensorflow.GraphDef as the
serialized size (2838040852bytes) would be larger than the limit
(2147483647 bytes)