Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
143 views
in Technique[技术] by (71.8m points)

Extract HTML Tables With Similar Data from Different Sources with Different Formatting - Python

I am trying to scrape HTML tables from two different HTML sources. Both are very similar, each table includes the same data but they may be structured differently, with different column names etc. For one source, all of the data may be included in one table, while the other source may have the data broken up into two separate tables.

As an example, we can look at insider holders of both AAPL and MMM stocks.

Screenshots here - https://imgur.com/a/OihTSZR

Lets say the end goal is to extract the total number of shares held by insiders - one singular number. Each table may be structured differently, but what should be similar is key words such as "Beneficially" or "Stock".

Any help would be greatly appreciated. In a previous post I was able to extract some of the data. But it can't be looped or repeated if structuring is different.

Extract HTML Table Based on Specific Column Headers - Python

df = pd.read_html("https://www.sec.gov/Archives/edgar/data/66740/000120677420000907/mmm3661701-def14a.htm", attrs={'style': 'border-collapse: collapse; width: 100%; font: 9pt Arial, Helvetica, Sans-Serif'}, match="Name/address")

df = df[0]
df = df.dropna(axis = 'columns')

Also attempted with BS


url = 'https://www.sec.gov/Archives/edgar/data/66740/000120677420000907/mmm3661701-def14a.htm'
r = requests.get(url) 
soup = BeautifulSoup(r.text, 'html.parser')
tables = soup.find_all('table')
rows = tables.find_all('tr')

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

That was really complicated but here we go :).

import requests
from bs4 import BeautifulSoup
import re
import pandas as pd


urls = ['https://www.sec.gov/Archives/edgar/data/320193/000119312520001450/d799303ddef14a.htm',
        'https://www.sec.gov/Archives/edgar/data/66740/000120677420000907/mmm3661701-def14a.htm']


def main(urls):
    with requests.Session() as req:
        for url in urls:
            r = req.get(url)
            soup = BeautifulSoup(r.content, 'html.parser')
            for item in soup.findAll("a", text=re.compile("^Security")):
                item = item.get("href")[1:]
                catch = soup.find("a", {'name': item}).find_next("table")
                df = pd.read_html(str(catch))
                print(df)
                df[0].to_csv(f"{item}.csv", index=False, header=None)


main(urls)

Output:

[                                                    0  ...    8
0                                                 NaN  ...  NaN
1                                                 NaN  ...  NaN
2                            Name of Beneficial Owner  ...  NaN
3                                                 NaN  ...  NaN
4                                  The Vanguard Group  ...    %
5                                                 NaN  ...  NaN
6                                     BlackRock, Inc.  ...    %
7                                                 NaN  ...  NaN
8         Berkshire Hathaway Inc. / Warren E. Buffett  ...    %
9                                                 NaN  ...  NaN
10                                         Kate Adams  ...  NaN
11                                                NaN  ...  NaN
12                                    Angela Ahrendts  ...  NaN
13                                                NaN  ...  NaN
14                                         James Bell  ...  NaN
15                                                NaN  ...  NaN
16                                           Tim Cook  ...  NaN
17                                                NaN  ...  NaN
18                                            Al Gore  ...  NaN
19                                                NaN  ...  NaN
20                                        Andrea Jung  ...  NaN
21                                                NaN  ...  NaN
22                                       Art Levinson  ...  NaN
23                                                NaN  ...  NaN
24                                       Luca Maestri  ...  NaN
25                                                NaN  ...  NaN
26                                    Deirdre O’Brien  ...  NaN
27                                                NaN  ...  NaN
28                                          Ron Sugar  ...  NaN
29                                                NaN  ...  NaN
30                                         Sue Wagner  ...  NaN
31                                                NaN  ...  NaN
32                                      Jeff Williams  ...  NaN
33                                                NaN  ...  NaN
34  All current executive officers and directors a...  ...  NaN

[35 rows x 9 columns]]
[                                                   0   1   ...                18  19 
0                        Name  and principal position NaN  ...  Percent of Class NaN  
1                    Thomas “Tony” K. Brown, Director NaN  ...               (5) NaN  
2                           Pamela J. Craig, Director NaN  ...               (5) NaN  
3                           David B. Dillon, Director NaN  ...               (5) NaN  
4                          Michael L. Eskew, Director NaN  ...               (5) NaN  
5                         Herbert L. Henkel, Director NaN  ...               (5) NaN  
6                               Amy E. Hood, Director NaN  ...               (5) NaN  
7                               Muhtar Kent, Director NaN  ...               (5) NaN  
8                           Edward M. Liddy, Director NaN  ...               (5) NaN  
9                           Dambisa F. Moyo, Director NaN  ...               (5) NaN  
10                          Gregory R. Page, Director NaN  ...               (5) NaN  
11                       Patricia A. Woertz, Director NaN  ...               (5) NaN  
12  Michael F. Roman, Chairman of the Board, Presi... NaN  ...               (5) NaN  
13  Inge G. Thulin, Former Executive Chairman of t... NaN  ...               (5) NaN  
14  Nicholas C. Gangestad, Senior Vice President a... NaN  ...               (5) NaN  
15  Ashish K. Khandpur, Executive Vice President, ... NaN  ...               (5) NaN  
16  Julie L. Bushman, Executive Vice President, In... NaN  ...               (5) NaN  
17  Joaquin Delgado, Former Executive Vice Preside... NaN  ...               (5) NaN  
18  Michael G. Vale, Executive Vice President, Saf... NaN  ...               (5) NaN  
19  All Directors and Executive Officers as a Grou... NaN  ...               (5) NaN  

[20 rows x 20 columns]]
[                                                   0   1  ...                  6   7 
0                                       Name/address NaN  ...  Percent  of Class NaN  
1  The Vanguard Group(1) 100 Vanguard Blvd. Malve... NaN  ...               8.78 NaN  
2  State Street Corporation(2) State Street Finan... NaN  ...               7.36 NaN  
3  BlackRock, Inc.(3) 55 East 52nd Street New Yor... NaN  ...               7.30 NaN  

[4 rows x 8 columns]]

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...