Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
291 views
in Technique[技术] by (71.8m points)

python - Get a subset of a data frame into a matrix

I have this data frame:

enter image description here

I want just the numbers under August - September to be placed into a matrix, how can I do this?

I tried this cf = df.iloc[:,1:12] which gives me but it gives me the headers as well which I do not need.

I did this

cf = df.iloc[:,1:12]
cf = cf.values
print(cf)

which gives me

[['$0.00 ' '$771.98 ' '$0.00 ' ..., '$771.98 ' '$0.00 ' '$1,543.96 ']
 ['$1,320.83 ' '$4,782.33 ' '$1,320.83 ' ..., '$1,954.45 ' '$0.00 '
  '$1,954.45 ']
 ['$2,043.61 ' '$0.00 ' '$4,087.22 ' ..., '$4,662.30 ' '$2,907.82 '
  '$1,549.53 ']
 ..., 
 ['$427.60 ' '$0.00 ' '$427.60 ' ..., '$427.60 ' '$0.00 ' '$427.60 ']
 ['$868.58 ' '$1,737.16 ' '$0.00 ' ..., '$868.58 ' '$868.58 ' '$868.58 ']
 ['$0.00 ' '$1,590.07 ' '$0.00 ' ..., '$787.75 ' '$0.00 ' '$0.00 ']]

I need these to be of floating types.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Given (stealing from an earlier problem today):

"""
IndexID IndexDateTime IndexAttribute ColumnA ColumnB
   1      2015-02-05        8           A       B
   1      2015-02-05        7           C       D
   1      2015-02-10        7           X       Y
"""

import pandas as pd
import numpy as np

df = pd.read_clipboard(parse_dates=["IndexDateTime"]).set_index(["IndexID", "IndexDateTime", "IndexAttribute"])

df:

                                     ColumnA ColumnB
IndexID IndexDateTime IndexAttribute                
1       2015-02-05    8                    A       B
                      7                    C       D
        2015-02-10    7                    X       Y

using

df.values

returns

array([['A', 'B'],
       ['C', 'D'],
       ['X', 'Y']], dtype=object)

To subset, you can use a couple of techniques. Here,

df.loc[:, "ColumnA":"ColumnB"]

Returns all rows and slices from ColumnA to ColumnB. Other options include syntax like df[df["column"] == condition] or df.iloc[1:3, 0:5]; which approach is best more or less depends on your data, how readable you want your code to be, and which is fastest for what you're trying to do. Using .loc or .iloc is usually a safe bet, in my experience.

In general for pandas problems, it is helpful to post some sample data rather than an image of your dataframe; otherwise, the burden is on the SO users to generate data that mimics yours.

Edit: To convert currency to float, try this:

df.replace('[$,]', '', regex=True).astype(float)

So, in a one-liner,

df.loc[:, "ColumnB":"ColumnC"].replace('[$,]', '', regex=True).values.astype(float)

yields

array([[1.23, 1.23],
       [1.23, 1.23],
       [1.23, 1.23]])

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...