To choose a benchmark, you need to know exactly what you're trying to measure. Your question doesn't include that, so there's not much anyone can tell you without taking a wild guess.
If you're trying to measure how well Turbo clock speed works to make a power-limited CPU like your laptop run faster for bursty workloads (e.g. to compare Haswell against Skylake's new and improved power management), you could just run something trivial that's 1 second on, 2 seconds off, and count how many loop iterations it manages.
The duty cycle and cycle length should be benchmark parameters, so you can make plots. e.g. with very fast on/off cycles, Skylake's faster-reacting Turbo will ramp up faster and drop down to min power faster (leaving more headroom in the bank for the next burst).
The speaker in that talk (the lead architect for power management on Intel CPUs) says that Javascript benchmarks are actually bursty enough for Skylake's power management to give a measurable speedup, unlike most other benchmarks which just peg the CPU at 100% the whole time. So maybe have a look at Javascript benchmarks, if you want to use well-known off-the-shelf benchmarks.
If rolling your own, put a loop-carried dependency chain in the loop, preferably with something that's not too variable in latency across microarchitectures. A long chain of integer adds would work, and Fibonacci is a good way to stop the compiler from optimizing it away. Either pick a fixed iteration count that works well for current CPU speeds, or check the clock every 10M iterations.
Or set a timer that will fire after some time, and have it set a flag that you check inside the loop. (e.g. from a signal handler). Specifically, alarm(2)
may be a good choice. Record how many iterations you did in this burst of work.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…