Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
233 views
in Technique[技术] by (71.8m points)

python - Random weighted choice

I have data like this:

d = (
  (701, 1, 0.2),
  (701, 2, 0.3),
  (701, 3, 0.5),
  (702, 1, 0.2),
  (702, 2, 0.3),
  (703, 3, 0.5)
)

Where (701, 1, 0.2) = (id1, id2, priority)

Is there a pretty way to choose id2 if I know id1, using priority?

Func(701) should return:
  1 - in 20% cases
  2 - 30%
  3 - 50%

Percent will be rough of course

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Generate a Cumulative Distribution Function for each ID1 thus:

cdfs = defaultdict()
for id1,id2,val in d:
    prevtotal = cdfs[id1][-1][0]
    newtotal = prevtotal + val
    cdfs[id1].append( (newtotal,id2) )

So you will have

cdfs = { 701 : [ (0.2,1), (0.5,2), (1.0,3) ], 
         702 : [ (0.2,1), (0.5,2) ],
         703 : [ (0.5,3) ] }

Then generate a random number and search for it in the list.

def func(id1):
    max = cdfs[id1][-1][0]
    rand = random.random()*max
    for upper,id2 in cdfs[id1]:
        if upper>rand:
            return id2
    return None

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...