Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.6k views
in Technique[技术] by (71.8m points)

numpy - How to implement the Softmax function in Python

From the Udacity's deep learning class, the softmax of y_i is simply the exponential divided by the sum of exponential of the whole Y vector:

enter image description here

Where S(y_i) is the softmax function of y_i and e is the exponential and j is the no. of columns in the input vector Y.

I've tried the following:

import numpy as np

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()

scores = [3.0, 1.0, 0.2]
print(softmax(scores))

which returns:

[ 0.8360188   0.11314284  0.05083836]

But the suggested solution was:

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    return np.exp(x) / np.sum(np.exp(x), axis=0)

which produces the same output as the first implementation, even though the first implementation explicitly takes the difference of each column and the max and then divides by the sum.

Can someone show mathematically why? Is one correct and the other one wrong?

Are the implementation similar in terms of code and time complexity? Which is more efficient?

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

They're both correct, but yours is preferred from the point of view of numerical stability.

You start with

e ^ (x - max(x)) / sum(e^(x - max(x))

By using the fact that a^(b - c) = (a^b)/(a^c) we have

= e ^ x / (e ^ max(x) * sum(e ^ x / e ^ max(x)))

= e ^ x / sum(e ^ x)

Which is what the other answer says. You could replace max(x) with any variable and it would cancel out.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...