Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
188 views
in Technique[技术] by (71.8m points)

python - how to get ticks every hour?

Consider this simple example

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
import matplotlib.dates as mdates

pd.__version__
Out[147]: u'0.22.0'

idx = pd.date_range('2017-01-01 05:03', '2017-01-01 18:03', freq = 'min')

df = pd.Series(np.random.randn(len(idx)),  index = idx)
df.head()
Out[145]: 
2017-01-01 05:03:00   0.4361
2017-01-01 05:04:00   0.9737
2017-01-01 05:05:00   0.8430
2017-01-01 05:06:00   0.4292
2017-01-01 05:07:00   0.5739
Freq: T, dtype: float64

I want to plot this, and have ticks every hour. I use:

fig, ax = plt.subplots()
hours = mdates.HourLocator(interval = 1)  #
h_fmt = mdates.DateFormatter('%H:%M:%S')

df.plot(ax = ax, color = 'black', linewidth = 0.4)

ax.xaxis.set_major_locator(hours)
ax.xaxis.set_major_formatter(h_fmt)

which gives

enter image description here

why dont the ticks appear every hour here? Thanks for your help!

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The problem is that while pandas in general directly wraps the matplotlib plotting methods, this is not the case for plots with dates. As soon as dates are involved, pandas uses a totally different numerical representation of dates and hence also uses its own locators for the ticks.

In case you want to use matplotlib.dates formatters or locators on plots created with pandas you may use the x_compat=True option in pandas plots.

df.plot(ax = ax, color = 'black', linewidth = 0.4, x_compat=True)

This allows to use the matplotlib.dates formatters or locators as shown below. Else you may replace df.plot(ax = ax, color = 'black', linewidth = 0.4) by

ax.plot(df.index, df.values, color = 'black', linewidth = 0.4)

Complete example:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

idx = pd.date_range('2017-01-01 05:03', '2017-01-01 18:03', freq = 'min')
df = pd.Series(np.random.randn(len(idx)),  index = idx)

fig, ax = plt.subplots()
hours = mdates.HourLocator(interval = 1)
h_fmt = mdates.DateFormatter('%H:%M:%S')

ax.plot(df.index, df.values, color = 'black', linewidth = 0.4)
#or use
df.plot(ax = ax, color = 'black', linewidth = 0.4, x_compat=True)
#Then tick and format with matplotlib:
ax.xaxis.set_major_locator(hours)
ax.xaxis.set_major_formatter(h_fmt)

fig.autofmt_xdate()
plt.show()

enter image description here


If the motivation to use pandas here is (as stated in the comments below) to be able to use secondary_y, the equivalent for matplotlib plots would be a twin axes twinx.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

idx = pd.date_range('2017-01-01 05:03', '2017-01-01 18:03', freq = 'min')

df = pd.DataFrame(np.cumsum(np.random.randn(len(idx), 2),0), 
                  index = idx, columns=list("AB"))

fig, ax = plt.subplots()
ax.plot(df.index, df["A"], color = 'black')
ax2 = ax.twinx()
ax2.plot(df.index, df["B"], color = 'indigo')

hours = mdates.HourLocator(interval = 1)
h_fmt = mdates.DateFormatter('%H:%M:%S')
ax.xaxis.set_major_locator(hours)
ax.xaxis.set_major_formatter(h_fmt)

fig.autofmt_xdate()
plt.show()

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...